

Praise for Zero Trust Networks, 2nd edition

Zero trust is not just a strategy; it is a mindset that challenges
assumptions, scrutinizes every interaction, and guards our digital
systems against unseen foes. This book offers practical guidance for
chief technology officers, engineers, and information technology
professionals embarking on their zero trust journey.

—Ann Johnson, Corporate Vice President, Microsoft
Security

This book packages essential concepts of zero trust security in an easy
to understand language. A definitive read for beginners and
professionals alike.

—Karan Dwivedi, Security Engineering Manager at
Google

This book does an excellent job of synthesizing the zero-trust security
model. It explains the key pillars of zero trust security while also
covering the zero trust frameworks developed by NIST, DoD, CISA, and
other organizations, making it a valuable resource for anyone seeking to
understand how to implement the zero-trust security model.

—Andrew Cameron, Automotive Industry Technical
Fellow in Identity

We may not realize this, but our lives depend on computers. When you
are in an airplane, or in a hospital, or in a train, or even turning a light
bulb on at home, it’s all computers. A breach can cause pandemonium,
and securing this infrastructure is paramount. As such, zero trust
networks provide you with the fundamentals and mindset you need to
understand to secure your investments. This book is a great resource for
developers, infrastructure engineers, and managers alike, as it
thoroughly explains the whys and hows of zero trust.

—Sahil Malik, Security Engineer, IT Industry

With the rapid adoption of cloud networks, bring-your-own-device, and
work-from-home policies, implementing zero trust security in today’s
enterprise networks is an absolute must. It’s a lot more complicated than
it sounds. But Razi Rais and Christina Morillo make all of the
technicalities understandable for readers with general IT backgrounds.
Their book is a must read for all people who administrate computer
networks for business.

—Kim Crawley, cybersecurity researcher and author of
Hacker Culture: A to Z and The Pentester Blueprint

Zero Trust Networks
2ND EDITION

Building Secure Systems in Untrusted Networks

Razi Rais, Christina Morillo, Evan Gilman, and
Doug Barth

Zero Trust Networks
by Razi Rais, Christina Morillo, Evan Gilman, and Doug Barth

Copyright © 2024 Christina Morillo and Razi Rais. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(https://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Simina Calin

Development Editor: Michele Cronin

Production Editor: Ashley Stussy

Copyeditor: Liz Wheeler

Proofreader: Sonia Saruba

Indexer: WordCo Indexing Services, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

June 2017: First Edition

March 2024: Second Edition

https://oreilly.com/

Revision History for the First Edition

2024-02-23: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781492096597 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Zero
Trust Networks, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-492-09659-7

[LSI]

https://oreilly.com/catalog/errata.csp?isbn=9781492096597

Preface

Thank you for choosing to read Zero Trust Networks, 2E! Building trusted
systems in hostile networks has been a passion of ours for many years. In
building and designing such systems, we have found frustration in the pace of
progress toward solving some of the more fundamental security problems
plaguing our industry. We’d very much like to see the industry move more
aggressively toward building systems that strive to solve these problems.

To that end, we propose that the world take a new stance toward building
and maintaining secure computer networks. Rather than being something that
is layered on top, only considered after some value has been built, security
must be fundamentally infused with the operation of the system itself. It must
be ever-present, enabling operation rather than restricting it. As such, this
book sets forth a collection of design patterns and considerations which,
when heeded, can produce systems that are resilient to the vast majority of
modern-day attack vectors.

This collection, when taken as a whole, is known as the zero trust model. In
this model, nothing is taken for granted, and every single access request—
whether it’s made by a client in a coffee shop or a server in the datacenter—
is rigorously checked and proven to be authorized. Adopting this model
practically eliminates lateral movement, VPN headaches, and centralized
firewall management overhead. It is a very different model; one that we
believe represents the future of network and infrastructure security design.

In the second edition, we broaden the scope to include recent developments
in zero trust. We have added two entirely new chapters and additional real-
world scenario walkthroughs to the current chapters. The chapter on zero
trust architectural standards, frameworks, and guidelines will help you better
grasp the zero trust perspective from leading organizations, such as NIST,
CISA, DoD, and others. Since zero trust initiatives are not easy, we added a
chapter dedicated to discussing challenges and practical advice to deal with
them. This chapter finishes with an examination of more recent technical

advancements, including artificial intelligence, quantum computing, and
privacy-preserving technologies, all of which are highly relevant to zero trust
and cybersecurity in general.

Who Should Read This Book
Have you found the overhead of centralized firewalls to be restrictive?
Perhaps you’ve even found their operation to be ineffective. Have you
struggled with VPN headaches, TLS configuration across a myriad of
applications and languages, or compliance and auditing hardships? These
problems represent a small subset of those addressed by the zero trust model.
If you find yourself thinking that there just has to be a better way, then you’re
in luck—this book is for you.

Network engineers, security engineers, CTOs, and everyone in between can
benefit from zero trust learnings. Even without a specialized skill set, many
of the principles included in this book can be clearly understood, helping
leaders make decisions that implement a zero trust model, improving their
overall security posture incrementally.

Additionally, readers with experience using configuration management
systems will see the opportunity to use those same ideas to build a more
secure and operable networked system—one in which resources are secure
by default. They will be interested in how automation systems can enable a
new network design that is able to apply fine-grained security controls more
easily. Finally, this book explores a mature zero trust design, enabling those
who have already incorporated the basic philosophies to further the
robustness of their security systems.

Why We Wrote This Book
We started speaking about our approach to system and network design at
industry conferences in 2014. At the time, we were using configuration
management systems to rigorously define the system state, applying changes
programmatically as a reaction to topological changes. As a result of

leveraging automation tools for this purpose, we naturally found ourselves
programmatically calculating the network enforcement details instead of
managing the configuration by hand. We found that using automation to
capture the system design in this way allowed us to deploy and manage
security features, including access control and encryption, much more easily
than in systems past. Even better, doing so allowed us to place much less
trust in the network than other systems might normally do, which is a key
security consideration when operating in and across public clouds.

While writing this book, we spoke to individuals from dozens of companies
to understand their perspective on network security designs. We found that
many of those companies were reducing the trust of their internal networks.
While each organization took a slightly different approach in their own
system, it was clear that they were all working under the same threat model
and were, as a result, building solutions that shared many properties.

Our goal with this book isn’t to present one or two particular solutions to
building these types of systems, but rather to define a system model that
places no trust in its communication network. Therefore, this book won’t be
focused on using specific vendor software or implementations, but rather it
will explore the concepts and philosophies that are used to build a zero trust
network. We hope you will find it useful to have a clear mental model for
how to construct this type of system when building your own system or, even
better, reusable solutions for the problems described herein.

Navigating This Book
This book is organized as follows:

Chapters 1 and 2 discuss the fundamental concepts at play in a zero trust
security model.

Chapters 3 and 4 explore the new concepts typically seen in mature zero
trust networks: context-aware network agents and trust engines.

Chapters 5 through 8 detail how trust is established among the various
actors in a network, with focus on devices, identities, applications, and
network traffic. Most of this content is focused on existing technology
that could be useful in a traditional network security model. The
scenario walkthroughs at the end of each chapter will help you
understand how the core principles of zero trust are used in a real-
world setting.

Chapter 9 brings all this content together to discuss how you could
begin building your own zero trust network and includes two case
studies.

Chapter 10 looks at the zero trust security model from an adversarial
view. It explores potential weaknesses, discussing which are well
mitigated and which are not.

Chapter 11 explores zero trust architectures, standards, and frameworks
from NIST, CISA, DoD, and others. The goal is to help you understand
the zero trust security model from the perspective of leading
organizations in the industry.

Chapter 12 outlines various functional and technical obstacles that
organizations experience when implementing zero initiatives. It also
provides high-level considerations that may assist you in effectively
dealing with these challenges. Additionally, it examines the impact of
artificial intelligence (AI), quantum computing, and privacy-enhancing
technologies on zero trust security models, which are extremely
important advancements to understand. The potential impact of AI,
quantum computation, and privacy-enhancing technologies on zero trust
security model is also examined. Comprehending these advancements is
of the utmost importance, given their pivotal role in cybersecurity
strategy.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training, knowledge,
and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,

https://oreilly.com/

and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/zero-
trust-networks-2e.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

https://oreilly.com/
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/zero-trust-networks-2e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments from the First Edition
We would like to thank our editor, Courtney Allen, for her help and guidance
during the writing process. Thanks also to Virginia Wilson, Nan Barber, and
Maureen Spencer for their help during the review.

We had the opportunity to meet with many people during the writing of this
content, and we appreciate their willingness to speak with us and provide
intros to other folks working in this space. Thanks to Rory Ward, Junaid
Islam, Stephen Woodrow, John Kindervag, Arup Chakrabarti, Julia Evans,
Ed Bellis, Andrew Dunham, Bryan Berg, Richo Healey, Cedric Staub, Jesse
Endahl, Andrew Miklas, Peter Smith, Dimitri Stiliadis, Jason Chan, and
David Cheney.

A special thanks to Betsy Beyer for writing the Google BeyondCorp case
study included in the book. We really appreciate your willingness to work on
getting that content included. Thanks!

Thanks to our technical reviewers, Ryan Huber, Kevin Babcock, and Pat
Cable. We found your comments invaluable and appreciate the time you took
to read through the initial drafts.

Doug would like to thank his wife, Erin, and daughters, Persephone and
Daphne, for being so very understanding of the time it took to write this book.

Evan thanks his partner, Kristen, for all of her support through the writing of
this book. He would also like to thank Kareem Ali and Kenrick Thomas—
without them, none of this would have been possible.

Acknowledgments from the Second Edition
We are especially grateful to Michele Cronin, our development editor, for
her assistance and direction throughout the process. Thanks also to Simina
Calin, our acquisitions editor, for helping us in establishing a successful path
for this book.

Our heartfelt thanks goes out to our technical reviewers, including Kim
Crawley, Steve Winterfeld, and Karan Dwivedi, whose extensive feedback

and recommendations have enhanced every facet of this book. Many thanks!

Razi would like to thank his wonderful wife, Javeria, as well as his mother
and sister, Zahida and Khaizran, for their unwavering support throughout the
writing of this book.

Christina would like to thank her husband and children for their steadfast
support and patience during the book-writing journey.

Chapter 1. Zero Trust
Fundamentals

In an age when network surveillance is ubiquitous, we find it difficult to trust
anyone, and defining what trust is itself is equally difficult. Can we trust that
our internet traffic will be safe from eavesdropping? Certainly not! What
about that provider you leased your fiber from? Or that contracted technician
who was in your datacenter yesterday working on the cabling?

Whistleblowers like Edward Snowden and Mark Klein have revealed the
tenacity of government-backed spy rings. The world was shocked at the
revelation that they had managed to get inside the datacenters of large
organizations. But why? Isn’t it exactly what you would do in their position?
Especially if you knew that traffic there would not be encrypted?

The assumption that systems and traffic within a datacenter can be trusted is
flawed. Modern networks and usage patterns no longer echo those that made
perimeter defense make sense many years ago. As a result, moving freely
within a “secure” infrastructure frequently has a low barrier to entry once a
single host or link there has been compromised.

You may think that the idea of using a cyberattack as a weapon to disrupt
critical infrastructure like a nuclear plant or a power grid is far-fetched, but
cyberattacks on the Colonial Pipeline in the United States and the
Kudankulam Nuclear Power Plant in India serve as a stark reminder that
critical infrastructure will continue to be a high-value target for attackers. So,
what was common between the two attacks?

Well, in both cases, security was abysmal. Attackers took advantage of the
fact that the VPN (virtual private network) connection to the Colonial
Pipeline network was possible using a plain-text password without any
multifactor authentication (MFA) in place. In the other example, malware
was discovered on an Indian nuclear power plant employee’s computer that

https://oreil.ly/EFIC1
https://oreil.ly/0rBQ5

was connected to the administrative network’s internet servers. Once the
attackers gained access, they were able to roam within the network due to the
“trust” that comes with being inside the network.

Zero trust aims to solve the inherent problems in placing our trust in the
network. Instead, it is possible to secure network communication and access
so effectively that the physical security of the transport layer can be
reasonably disregarded. It goes without saying that this is a lofty goal. The
good news is that we’ve got pretty powerful cryptographic algorithms these
days, and given the right automation systems, this vision is actually
attainable.

What Is a Zero Trust Network?
A zero trust network is built upon five fundamental assertions:

The network is always assumed to be hostile.

External and internal threats exist on the network at all times.

Network locality alone is not sufficient for deciding trust in a network.

Every device, user, and network flow is authenticated and authorized.

Policies must be dynamic and calculated from as many sources of data
as possible.

Traditional network security architecture breaks different networks (or
pieces of a single network) into zones, contained by one or more firewalls.
Each zone is granted some level of trust, which determines the network
resources it is permitted to reach. This model provides very strong defense-
in-depth. For example, resources deemed more risky, such as web servers
that face the public internet, are placed in an exclusion zone (often termed a
“DMZ”), where traffic can be tightly monitored and controlled. Such an
approach gives rise to an architecture that is similar to some you might have
seen before, such as the one shown in Figure 1-1.

Figure 1-1. Traditional network security architecture

The zero trust model turns this diagram inside out. Placing stopgaps in the
network is a solid step forward from the designs of yesteryear, but it is
significantly lacking in the modern cyberattack landscape. There are many
disadvantages:

Lack of intra-zone traffic inspection

Lack of flexibility in host placement (both physical and logical)

Single points of failure

It should be noted that, should network locality requirements be removed, the
need for VPNs is also removed. A virtual private network (VPN) allows a
user to authenticate in order to receive an IP address on a remote network.
The traffic is then tunneled from the device to the remote network, where it is
decapsulated and routed. It’s the greatest backdoor that no one ever
suspected. If we instead declare that network location has no value, VPN is
suddenly rendered obsolete, along with several other modern network
constructs. Of course, this mandate necessitates pushing enforcement as far
toward the network edge as possible, but at the same time it relieves the core
from such responsibility. Additionally, stateful firewalls exist in all major
operating systems, and advances in switching and routing have opened an

opportunity to install advanced capabilities at the edge. All of these gains
come together to form one conclusion: the time is right for a paradigm shift.
By leveraging distributed policy enforcement and applying zero trust
principles, we can produce a design similar to the one shown in Figure 1-2.

Figure 1-2. Zero trust architecture

Introducing the Zero Trust Control Plane
The supporting system is known as the control plane, while most everything
else is referred to as the data plane, which the control plane coordinates and
configures. Requests for access to protected resources are first made through
the control plane, where both the device and user must be authenticated and
authorized. Fine-grained policy can be applied at this layer, perhaps based
on role in the organization, time of day, geo-location, or type of device.
Access to more secure resources can additionally mandate stronger
authentication.

Once the control plane has decided that the request will be allowed, it
dynamically configures the data plane to accept traffic from that client (and
that client only). In addition, it can coordinate the details of an encrypted
tunnel between the requestor and the resource. This can include temporary
one-time-use credentials, keys, and ephemeral port numbers.

It should be noted that the control plane decision to allow a request is time-
bound rather than permanent. This means that if and when the factors that led
the control plane decision to allow the request in the first place have
changed, it may coordinate with the data plane to revoke the requested access
to the resource.

While some compromises can be made on the strength of these measures, the
basic idea is that an authoritative source, or trusted third party, is granted the
ability to authenticate, authorize, and coordinate access in real time, based on
a variety of inputs. We’ll discuss the control and data planes more in
Chapter 2.

Evolution of the Perimeter Model
The traditional architecture described in this book is often referred to as the
perimeter model, after the castle-wall approach used in physical security.
This approach protects sensitive items by building lines of defenses that an
intruder must penetrate before gaining access. Unfortunately, this approach is
fundamentally flawed in the context of computer networks and no longer
suffices. To fully understand the failure, it is useful to recall how the current
model was arrived at.

Managing the Global IP Address Space
The journey that led to the perimeter model began with address assignment.
Networks were being connected at an ever-increasing rate during the days of
the early internet. If a network wasn’t being connected to the internet
(remember, the internet wasn’t ubiquitous at the time), it was being connected
to another business unit, another company, or perhaps a research network. Of

course, IP addresses must be unique in any given IP network, and if the
network operators were unlucky enough to have overlapping ranges, they
would have a lot of work to do in changing them all. If the network you are
connecting to happens to be the internet, then your addresses must be globally
unique. So clearly some coordination is required here.

The Internet Assigned Numbers Authority (IANA), formally established in
1998, is the body that today provides that coordination. Prior to the
establishment of the IANA, this responsibility was handled by Jon Postel,
who created the internet map shown in Figure 1-3. He was the authoritative
source for IP address ownership records, and if you wanted to guarantee that
your IP addresses were globally unique, you would register with him. At this
time, everybody was encouraged to register for IP address space, even if the
network being registered was not going to be connected to the internet. The
assumption was that even if a network was not connected now, it would
probably be connected to another network at some point.

https://oreil.ly/A0rHj

Figure 1-3. A map of the early internet created by Jon Postel, dated February 1982

Birth of Private IP Address Space

As IP adoption grew through the late 1980s and early 1990s, frivolous use of
address space became a serious concern. Numerous cases of truly isolated
networks with large IP address space requirements began to emerge.
Networks connecting ATMs and arrival/departure displays at large airports
were touted as prime examples. These networks were considered truly
isolated for various reasons. Some devices might be isolated to meet security
or privacy requirements (e.g., networks meant for ATMs). Some might be
isolated because the scope of their function was so limited that having
broader network access was seen as exceedingly unlikely (e.g., airport
arrival and departure displays). RFC 1597, Address Allocation for Private
Internets, was introduced to address this wasted public address space issue.

In March of 1994, RFC 1597 announced that three IP network ranges had
been reserved with IANA for general use in private networks: 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. This had the effect of slowing address
depletion by ensuring that the address space of large private networks never
grew beyond those allocations. It also enabled network operators to use
nonglobally unique addresses where and when they saw fit. It had another
interesting effect, which lingers with us today: networks using private
addresses were more secure, because they were fundamentally incapable of
joining other networks, particularly the internet.

At the time, very few organizations (relatively speaking) had an internet
connection or presence, and as such, internal networks were frequently
numbered with the reserved ranges. Additionally, security measures were
weak to nonexistent because these networks were typically confined by the
walls of a single organization.

Private Networks Connect to Public Networks
The number of interesting things on the internet grew fairly quickly, and soon
most organizations wanted at least some sort of presence. Email was one of
the earliest examples of this. People wanted to be able to send and receive
email, but that meant they needed a publicly accessible mail server, which of
course meant that they needed to connect to the internet somehow. With
established private networks, it was often the case that this mail server

https://oreil.ly/x94Ap

would be the only server with an internet connection. It would have one
network interface facing the internet, and one facing the internal network.
With that, systems and people on the internal private network got the ability
to send and receive internet email via their connected mail server.

It was quickly realized that these servers had opened up a physical internet
path into their otherwise secure and private network. If one was
compromised, an attacker might be able to work their way into the private
network, since hosts there can communicate with it. This realization
prompted strict scrutiny of these hosts and their network connections.
Network operators placed firewalls on both sides of them to restrict
communication and thwart potential attackers attempting to access internal
systems from the internet, as shown in Figure 1-4. With this step, the
perimeter model was born. The internal network became the “secure”
network, and the tightly controlled pocket that the external hosts lay in
became the DMZ, or the demilitarized zone.

Figure 1-4. Both internet and private resources can access hosts in the DMZ; private resources,
however, cannot reach beyond the DMZ, and thus do not gain direct internet access

Birth of NAT
The number of internet resources being accessed from internal networks was
growing rapidly, and it quickly became easier to grant general internet access
to internal resources than it was to maintain intermediary hosts for every
application desired. NAT, or network address translation, solved that
problem nicely.

RFC 1631, The IP Network Address Translator, defines a standard for a
network device that is capable of performing IP address translation at
organizational boundaries. By maintaining a table that maps public IPs and
ports to private ones, it enabled devices on private networks to access
arbitrary internet resources. This lightweight mapping is application
agnostic, which meant that network operators no longer needed to support
internet connectivity for particular applications; they needed only to support
internet connectivity in general.

These NAT devices had an interesting property: because the IP mapping was
many-to-one, it was not possible for incoming connections from the internet
to access internal private IPs without specifically configuring the NAT to
handle this special case. In this way, the devices exhibited the same
properties as a stateful firewall. Actual firewalls began integrating NAT
features almost instantaneously, and the two became a single function, largely
indistinguishable. Supporting both network compatibility and tight security
controls meant that eventually you could find one of these devices at
practically every organizational boundary, as shown in Figure 1-5.

Figure 1-5. Typical (and simplified) perimeter firewall design

The Contemporary Perimeter Model
With a firewall/NAT device between the internal network and the internet,
the security zones are clearly forming. There is the internal “secure” zone,

https://oreil.ly/n5Wlh

the DMZ (demilitarized zone), and the untrusted zone (aka the internet). If at
some point in the future, this organization needed to interconnect with
another, a device would be placed on that boundary in a similar manner. The
neighboring organization would likely become a new security zone, with
particular rules about what kind of traffic can go from one to the other, just
like the DMZ or the secure zone.

Looking back, we see the progression. We went from offline/private
networks with just one or two hosts with internet access to highly
interconnected networks with security devices around the perimeter. It is not
hard to understand: network operators couldn’t afford to sacrifice the perfect
security of their offline network because they had to open doors for various
business purposes. Tight security controls at each door minimized the risk.

Evolution of the Threat Landscape
Even before the public internet, communicating with a remote computer
system was highly desirable. This was commonly done over the public
telephone system. Users and computer systems could dial in and, by encoding
data into audible tones, gain connectivity to the remote machine. These dial-
in interfaces were the most common attack vector of the day, since gaining
physical access was much more difficult.

Once organizations had internet-connected hosts, attacks shifted from
occurring over the telephone network to being launched over the dial-up
internet. This triggered a change in most attack dynamics. Incoming calls to
dial-in interfaces tied up a phone line, and were a notable occurrence when
compared to a TCP connection coming from the internet. It was much easier
to have a covert presence on an IP network than it was on a system that
needed to be dialed into. Exploitation and brute force attempts could be
carried out over long periods of time without raising too much
suspicion...though an additional and more impactful capability arose from
this shift: malicious code could then listen for internet traffic.

By the late 1990s, the world’s first (software) Trojan horses began to make
their rounds. Typically, a user would be tricked into installing the malware,

which would then open a port and wait for incoming connections. The
attacker could then connect to the open port and remotely control the target
machine.

It wasn’t long before that people realized it would be a good idea to protect
those internet-facing hosts. Hardware firewalls were the best way to do it
(most operating systems had no concept of a host-based firewall at the time).
They provided policy enforcement, ensuring that only whitelisted/allowed-
listed “safe” traffic was allowed in from the internet. If an administrator
inadvertently installed something that exposed an open port (like a Trojan
horse), the firewall would physically block connections to that port until
explicitly configured to allow it. Likewise, traffic to the internet-facing
servers from inside the network could be controlled, ensuring that internal
users could speak to them, but not vice versa. This helped prevent movement
into the internal network by a potentially compromised DMZ host.

DMZ hosts were of course a prime target (due to their connectivity), though
such tight controls on both inbound and outbound traffic made it hard to reach
an internal network through a DMZ. An attacker would first have to
compromise the firewalled server, then abuse the application in such a way
that it could be used for covert communication (they need to get data out of
that network, after all). Dial-in interfaces remained the lowest-hanging fruit
if one was determined to gain access to an internal network.

This is where things took an interesting turn. NAT was introduced to grant
internet access to clients on internal networks. Due in some part to NAT
mechanics and in some part to real security concerns, there was still tight
control on inbound traffic, though internal resources wishing to consume
external resources might freely do so. There’s an important distinction to be
made when considering a network with NAT’d internet access against a
network without it: the former has a relaxed (if any) outbound network
policy.

This significantly transformed the network security model. Hosts on the
“trusted” internal networks could then communicate directly with untrusted
internet hosts, and the untrusted host was suddenly in a position to abuse the

client attempting to speak with it. Even worse, malicious code could then
send messages to internet hosts from within the internal network. Today, we
know this as “phoning home.”

Phoning home is a critical component of most modern attacks. It allows data
to be exfiltrated from otherwise-protected networks; but more importantly,
since TCP is bidirectional, it allows data to be injected as well. A typical
attack involves several steps, as shown in Figure 1-6. First, the attacker will
compromise a single computer on the internal network by exploiting the
user’s browser when they visit a particular page, by sending them an email
with an attachment that exploits some local software, for example. The
exploit carries a very small payload, just enough code to make a connection
out to a remote internet host and execute the code it receives in the response.
This payload is sometimes referred to as a dialer.

The dialer downloads and installs the real malware, which more often than
not will attempt to make an additional connection to a remote internet host
controlled by the attacker. The attacker will use this connection to send
commands to the malware, exfiltrate sensitive data, or even to obtain an
interactive session. This “patient zero” can act as a stepping stone, giving the
attacker a host on the internal network from which to launch additional
attacks.

Figure 1-6. Client initiates all attack-related connections, easily traversing perimeter firewalls
with relaxed outbound security

OUTBOUND SECURITY
Outbound network security is a very effective mitigation measure against dialer-based attacks, as the
phone home can be detected and/or blocked. Oftentimes, however, the phone home is disguised as
regular web traffic, possibly even to networks that are seemingly benign or “normal.” Outbound
security tight enough to stop these attacks will oftentimes cripple web usability for users. This is a
more realistic prospect for back-office systems.

The ability to launch attacks from hosts within an internal network is a very
powerful one. These hosts almost certainly have permission to talk to other
hosts in the same security zone (lateral movement) and might even have
access to talk to hosts in zones more secure than their own. To this effect, by
first compromising a low-security zone on the internal network, an attacker

can move through the network, eventually gaining access to the high-security
zones.

Taking a step back for a moment, it can be seen that this pattern very
effectively undermines the perimeter security model. The critical flaw
enabling attack progression is subtle, yet clear: security policies are defined
by network zones, enforced only at zone boundaries, using nothing more than
the source and destination details.

Other threats have risen as the world has become more ubiquitous over the
years. Companies nowadays allow their workers to use their own devices
for work in addition to the devices provided by the company, thanks to the
popularity of Bring Your Own Device (BYOD). Employees can be more
productive as a result of this, as they work from home more than ever before.
During COVID-19, we discovered the advantages of BYOD when employees
were no longer able to enter the workplace for extended periods of time.
However, the attack surface area has grown because patching numerous
devices with the most recent security fixes is significantly more difficult than
patching a single device. One type of attack, among others, is the zero-click
attack, which does not even require user interaction (more about it in the note
below). Attackers deliberately look for devices that haven’t had their
security patches updated in order to exploit vulnerabilities and obtain
unauthorized access to them. In Chapter 5, we’ll look at the role of security
patches and how to automate them to improve device trust.

ZERO-CLICK ATTACK
A zero-click attack is a highly sophisticated attack that infects the user’s device without the user’s
involvement. Zero-click attacks frequently take advantage of unpatched arbitrary code execution and
buffer overflow security flaws. Because these attacks are conducted without user interaction, they
can be incredibly effective. Popular apps like WhatsApp and Apple’s iMessage have been reported
to be vulnerable to zero-click attacks. In 2021, Google provided a comprehensive investigation of the
iMessage zero-click vulnerability, which describes the attack’s far-reaching ramifications. Patching
all devices that have access to company resources and services is critical at all times.

https://oreil.ly/PuvWi
https://oreil.ly/ckgGe
https://oreil.ly/h2nho

Perimeter Shortcomings
Even though the perimeter security model still stands as the most prevalent
model by far, it is increasingly obvious that the way we rely on it is flawed.
Complex (and successful) attacks against networks with perfectly good
perimeter security occur every day. An attacker drops a remote access tool
(or RAT) into your network through one of a myriad of methods, gains remote
access, and begins moving laterally. Perimeter firewalls have become the
functional equivalent of building a wall around a city to keep out the spies.

The problem comes when architecting security zones into the network itself.
Imagine the following scenario: you run a small ecommerce company. You
have some employees, some internal systems (payroll, inventory, etc.), and
some servers to power your website. It is natural to begin classifying the
kind of access these groups might need: employees need access to internal
systems, web servers need access to database servers, database servers
don’t need internet access but employees do, and so on. Traditional network
security would codify these groups as zones and then define which zone can
access what, as shown in Figure 1-7. Of course, you need to actually enforce
these policies; and since they are defined on a zone-by-zone basis, it makes
sense to enforce them wherever one zone can route traffic into another.

As you might imagine, there are always exceptions to these generalized
rules...they are, in fact, colloquially known as firewall exceptions. These
exceptions are typically as tightly scoped as possible. For instance, your web
developer might want SSH access to the production web servers, or your HR
representative might need access to the HR software’s database in order to
perform audits. In these cases, an acceptable approach is to configure a
firewall exception permitting traffic from that individual’s IP address to the
particular server(s) in question.

Now let’s imagine that your archnemesis has hired a team of hackers. They
want to have a peek at your inventory and sales numbers. The hackers send
emails to all the employee email addresses they can find on the internet,
masquerading as a discount code for a restaurant near the office. Sure
enough, one of them clicks the link, allowing the attackers to install malware.

The malware phones home and provides the attackers with a session on the
now-compromised employee’s machine. Luckily, it’s only an intern, and the
level of access they gain is limited.

Figure 1-7. Corporate network interacting with the production network

They begin searching the network and find that the company is using file
sharing software on its network. Out of all the employee computers on the
network, none of them have the latest version and are vulnerable to an attack
that was recently publicized.

One by one, the hackers begin searching for a computer with elevated access
(this process of course can be more targeted if the attacker has advanced
knowledge). Eventually they come across your web developer’s machine. A
keylogger they install there recovers the credentials to log in to the web
server. They SSH to the server using the credentials they gathered, and using
the sudo rights of the web developer, they read the database password from
disk and connect to the database. They dump the contents of the database,
download it, and delete all the log files. If you’re lucky, you might actually

discover that this breach occurred. They accomplished their mission, as
shown in Figure 1-8.

Wait, what? As you can see, many failures at many levels led to this breach,
and while you might think that this is a particularly contrived case, successful
attacks just like this one are staggeringly common. The most surprising part,
however, goes unnoticed all too often: what happened to all that network
security? Firewalls were meticulously placed, policies and exceptions were
tightly scoped and very limited, everything was done right from a network
security perspective. So what gives?

Figure 1-8. Attacker movement into corporate network, and subsequently production into
network

When carefully examined, it is overwhelmingly obvious that this network
security model is not enough. Bypassing perimeter security is trivial with
malware that phones home, and firewalls between zones consider nothing
more than source and destination when making enforcement decisions. While
perimeters can still provide some value in network security, their role as the

primary mechanism by which a network’s security stance is defined needs to
be reconsidered.

EXAMPLE ATTACK PROGRESSION
1. Employees targeted via phishing email

2. Corporate machine compromised, shell shoveled

3. Lateral movement through corporate network

4. Privileged workstation located

5. Local privilege escalation on workstation—keylogger installed

6. Developer password stolen

7. Compromised prod app host from privileged workstation

8. Developer password used to elevate privileges on prod app host

9. Database credentials stolen from app

10. Database contents exfiltrated via compromised app host

The first step, of course, is to search for existing solutions. Sure, the
perimeter model is the accepted approach to securing a network, but that
doesn’t mean we haven’t learned better elsewhere. What is the worst
possible scenario network security-wise? It turns out that there is actually a
level of absoluteness to this question, and the crux of it lies in trust.

Where the Trust Lies
When considering options beyond the perimeter model, one must have a firm
understanding of what is trusted and what isn’t. The level of trust defines a
lower limit on the robustness of the security protocols required.
Unfortunately, it is rare for robustness to exceed what is required, so it is
wise to trust as little as possible. Once trust is built into a system, it can be
very hard to remove.

A zero trust network is just as it sounds. It is a network that is completely
untrusted. Lucky for us, we interact with such a network very frequently: the
internet. The internet has taught us some valuable security lessons. Certainly,
an operator will secure an internet-facing server much differently than it
secures its locally accessible counterpart. Why is that? And if the pains
associated with such rigor were cured (or even just lessened), would the
security sacrifice still be worth it?

The zero trust model dictates that all hosts be treated as if they’re internet
facing. The networks they reside in must be considered compromised and
hostile. Only with this consideration can you begin to build secure
communication. With most operators having built or maintained internet-
facing systems in the past, we have at least some idea of how to secure IP in
a way that is difficult to intercept or tamper with (and, of course, how to
secure those hosts). Automation enables us to extend this level of security to
all of the systems in our infrastructure.

Automation as an Enabler
Zero trust networks do not require new protocols or libraries. They do,
however, use existing technologies in novel ways. Automation systems are
what allow a zero trust network to be built and operated.

Interactions between the control plane and the data plane are the most critical
points requiring automation. If policy enforcement cannot be dynamically
updated, zero trust will be unattainable; therefore, it is critical that this
process be automatic and rapid.

There are many ways that this automation can be realized. Purpose-built
systems are most ideal, though more mundane systems like traditional
configuration management can fit here as well. Widespread adoption of
configuration management represents an important stepping stone for a zero
trust network, as these systems often maintain device inventories and are
capable of automating network enforcement configuration in the data plane.

Due to the fact that modern configuration management systems can both
maintain a device inventory and automate the data plane configuration, they
are well positioned to be a first step toward a mature zero trust network.

Perimeter Versus Zero Trust
The perimeter and zero trust models are fundamentally different from each
other. The perimeter model attempts to build a wall between trusted and
untrusted resources (i.e., the local network and the internet). On the other
hand, the zero trust model basically throws the towel in and accepts the
reality that the “bad guys” are everywhere. Rather than build walls to protect
the soft bodies inside, it turns the entire population into a militia.

The current approaches to perimeter networks assign some level of trust to
the protected networks. This notion violates the zero trust model and leads to
some bad behavior. Operators tend to let their guard down a bit when the
network is “trusted” (they are human). Rarely are hosts that share a trust zone
protected from themselves. Sharing a trust zone, after all, seems to imply that
they are equally trusted. Over time, we have come to learn that this
assumption is false, and it is not only necessary to protect your hosts from the
outside, but it is also necessary to protect them from each other.

Since the zero trust model assumes the network is fully compromised, you
must also assume that an attacker can communicate using any arbitrary IP
address. Thus, protecting resources by using IP addresses or physical
location as an identifier is not enough. All hosts, even those that share “trust
zones,” must provide proper identification. Attackers are not limited to
active attacks, though. They can still perform passive attacks in which they
sniff your traffic for sensitive information. In this case, even host
identification is not enough—strong encryption is also required.

There are three key components in a zero trust network: user/application
authentication and authorization, device authentication and authorization, and
trust. The first component has some duality in it due to the fact that not all
actions are taken by users. So in the case of automated action (inside the

datacenter, for instance), we look at qualities of the application in the same
way that we would normally look at qualities of the user.

Authenticating and authorizing the device is just as important as doing so for
the user/application. This is a feature rarely seen in services and resources
protected by perimeter networks. It is often deployed using VPN or NAC
technology, especially in more mature networks, but finding it between
endpoints (as opposed to network intermediaries) is uncommon.

NAC AS A PERIMETER TECHNOLOGY
NAC, or Network Access Control, represents a set of technologies designed to strongly authenticate
devices in order to gain access to a sensitive network. These technologies, which include protocols
like 802.1X and the Trusted Network Connect (TNC) family, focus on admittance to a network
rather than admittance to a service and as such are independent of the zero trust model. An
approach more consistent with the zero trust model would involve similar checks located as close to
the service being accessed as possible (something which TNC can address—more on this in
Chapter 5). While NAC can still be employed in a zero trust network, it does not fulfill the zero trust
device authentication requirement due to its distance from the remote endpoint.

Finally, a “trust score” is computed, and the application, device, and score
are bonded to form an agent. Policy is then applied against the agent in order
to authorize the request. The richness of information contained within the
agent allows very flexible yet fine-grained access control, which can adapt
to varying conditions by inclusion of the score component in your policies.

If the request is authorized, the control plane signals the data plane to accept
the incoming request. This action can configure encryption details as well.
Encryption can be applied at the device level, application level, or both. At
least one is required for confidentiality.

With these authentication/authorization components, and the aid of the control
plane in coordinating encrypted channels, we can assert that every single
flow on the network is authenticated and expected. Hosts and network
devices drop traffic that has not had all of these components applied to it,
ensuring sensitive data can never leak out. Additionally, by logging each of

the control plane events and actions, network traffic can be easily audited on
a flow-by-flow or request-by-request basis.

Perimeter networks can be found that have similar capability, though these
capabilities are enforced at the perimeter only. VPNs famously attempt to
provide these qualities in order to secure access to an internal network, but
the security ends as soon as your traffic reaches a VPN concentrator. It is
apparent that operators know what internet-strength security is supposed to
look like; they just fail to implement those strong measures throughout.

If one can imagine a network that applies these measures homogeneously, a
brief thought experiment can shed a lot of light on this new paradigm. Identity
can be proven cryptographically, meaning it no longer matters what IP
address any given connection is originating from (technically, you can still
associate risk with it—more on that later). With automation removing the
technical barriers, the VPN is essentially obsolete. “Private” networks no
longer mean anything special: the hosts there are just as hardened as the ones
on the internet. Thinking critically about NAT and private address space,
perhaps zero trust makes it more obvious that the security arguments for it are
null and void.

Ultimately, the perimeter model flaw is its lack of universal protection and
enforcement. Secure cells with soft bodies inside. What we’re really looking
for is hard bodies, bodies that know how to check IDs and speak in a way
they can’t be overheard. Having hard bodies doesn’t necessarily preclude
you from also maintaining the security cells. In very sensitive installations,
this would still be encouraged. It does, however, raise the security bar high
enough that it wouldn’t be unreasonable to lessen or remove those cells.
Combined with the fact that the majority of the zero trust function can be done
with transparency to the end user, the model almost seems to violate the
security/convenience trade-off: stronger security, more convenience. Perhaps
the convenience problem (or lack thereof) has been pushed onto the
operators.

Applied in the Cloud

There are many challenges in deploying infrastructure into the cloud, one of
the larger being security. Zero trust is a perfect fit for cloud deployments for
an obvious reason: you can’t trust the network in a public cloud! The ability
to authenticate and secure communication without relying on IP addresses or
the security of the network connecting them means that compute resources can
be nearly commoditized. Since zero trust advocates that every packet be
encrypted, even within the same datacenter, operators need not worry about
which packets traverse the internet and which don’t. This advantage is often
understated. Cognitive load associated with when, where, and how to
encrypt traffic can be quite large, particularly for developers who may not
fully understand the underlying system. By eliminating special cases, we can
also eliminate the human error associated with them.

Some might argue that intra-datacenter encryption is overkill, even with the
reduction in cognitive load. History has proven otherwise. At large cloud
providers like AWS, a single “region” consists of many datacenters, with
fiber links between them. To the end user, this subtlety is often obfuscated.
The NSA was targeting precisely links like these in rooms like the one
shown in Figure 1-9.

Figure 1-9. Room 641A—NSA interception facility inside an AT&T datacenter in San Francisco

There are additional risks in the network implementation of the provider
itself. It is not impossible to think that a vulnerability might exist in which
neighbors can see your traffic. A more likely case is network operators
inspecting traffic while troubleshooting. Perhaps the operator is honest, but
how about the person who stole their laptop a few hours later with your
captures on the disk? The unfortunate reality is that we can no longer assume
that our traffic is protected from snooping or modification while in the
datacenter.

Role of Zero Trust in National Cybersecurity
In 2021, the United States White House released Executive Order (EO)
14028, calling out the need to improve national cybersecurity on an urgent
basis. The backdrop of this EO was ever increasingly sophisticated
cyberattacks over the span of many years, predominantly from foreign

https://oreil.ly/APvn7

adversaries, putting national security at risk. EO 14028 specifically calls out
advancement toward zero trust architecture as a critical step in improving
national cybersecurity:

The Federal Government must adopt security best practices; advance
toward Zero Trust Architecture; …..

—Excerpt from EO 14028

Adoption of zero trust is not just exclusive to the United States government
by any means. Governments across the globe have been embracing it to
improve the security posture. Another example is United Kingdom’s National
Cyber Security Centre zero trust architecture design principles.

In later chapters, we’ll cover efforts from various governmental and non-
governmental organizations like the National Institute of Standards and
Technology (NIST), the Cybersecurity & Infrastructure Security Agency
(CISA), The Open Group, etc., in publishing zero trust architecture,
principles, and guidelines.

Summary
This chapter explored the high-level concepts that have led us toward the
zero trust model. The zero trust model does away with the perimeter model,
which attempts to ensure that bad actors stay out of the trusted internal
network. Instead, the zero trust system recognizes that this approach is
doomed to failure, and as a result, starts with the assumption that malicious
actors are within the internal network and builds up security mechanisms to
guard against this threat.

To better understand why the perimeter model is failing us, we reviewed
how the perimeter model came into being. Back at the internet’s beginning,
the network was fully routable. As the system evolved, some users identified
areas of the network that didn’t have a credible reason to be routable on the
internet, and thus the concept of a private network was born. Over time, this
idea took hold, and organizations modeled their security around protecting
the trusted private network. Unfortunately, these private networks aren’t

https://oreil.ly/kGsoy

nearly as isolated as the original private networks were. The end result is a
very porous perimeter, which is frequently breached in regular security
incidents.

With the shared understanding of perimeter networks, we are able to contrast
that design against the zero trust design. The zero trust model carefully
manages trust in the system. These types of networks lean on automation to
realistically manage the security control systems that allow us to create a
more dynamic and hardened system. We introduced some key concepts like
the authentication of users, devices, and applications, and the authorization of
the combination of those components. We will discuss these concepts in
greater detail throughout the rest of this book.

Finally, we talked about how the move to public cloud environments and the
pervasiveness of internet connectivity have fundamentally changed the threat
landscape. “Internal” networks are now increasingly shared and sufficiently
abstracted away in such a way that end users don’t have as clear an
understanding of when their data is transiting more vulnerable long-distance
network links. The end result of this change is that data security is more
important than ever when constructing new systems. The next chapter will
discuss the high-level concepts that need to be understood in order to build
systems that can safely manage trust.

Chapter 2. Managing Trust

Trust management is perhaps the most important component of a zero trust
network. We are all familiar with trust to some degree—you probably trust
members of your family, but not a stranger on the street, and certainly not a
stranger who looks threatening or menacing. Why is that?

For starters, you actually know your family members. You know what they
look like, where they live; perhaps you’ve even known them your whole life.
There is no question of who they are, and you are more likely to trust them
with important matters than others.

A stranger, on the other hand, is someone completely unknown. You might see
their face, and be able to tell some basic things about them, but you don’t
know where they live, and you don’t know their history. They might appear
perfectly cromulent, but you likely wouldn’t rely on them for important
matters. Watch your stuff for you while you run to the bathroom? Sure. Make
a quick run to the ATM for you? Definitely not.

In the end, you are simply taking in all the information you can tell about the
situation, a person, and all you may know about them, and deciding how
trustworthy they are. The ATM errand requires a very high level of trust,
whereas watching your stuff needs much less, but not zero.

You may not even trust yourself completely, but you can definitely trust that
actions taken by you were taken by you. In this way, trust in a zero trust
network always originates with the operator. Trust in a zero trust network
seems contradictory, though it is important to understand that when you have
no inherent trust, you must source it from somewhere and manage it carefully.
There’s a small wrinkle though: the operator won’t always be available to
authorize and grant trust! Plus, the operator just doesn’t scale :). Luckily, we
know how to solve that problem—we delegate trust as shown in Figure 2-1.

Figure 2-1. An operator declares trust in a particular system, which can in turn trust another,
forming a trust chain

Trust delegation is important because it allows us to build automated systems
that can grow to a large scale and operate in a secure and trusted way with
minimal human intervention. The trusted operator must assign some level of
trust to a system, enabling it to take actions on behalf of the operator. A
simple example of this is autoscaling. You want your servers to provision
themselves as needed, but how do you know a new server is one of yours and
not some other random server? The operator must delegate the responsibility
to a provisioning system, granting it the ability to assign trust to, and create,
new hosts. In this way, we can say that we trust the new server is indeed our
own, because the provisioning system has validated that it has taken the
action to create it, and the provisioning system can prove that the operator
has granted it the ability to do so. This flow of trust back to the operator is

often referred to as a trust chain, and the operator can be referred to as a trust
anchor.

Threat Models
Defining threat models is an important first step when designing a security
architecture. A threat model enumerates the potential attackers, their
capabilities and resources, and their intended targets. Threat models will
normally define which attackers are in scope, rationally choosing to mitigate
attacks from weaker adversaries before moving on to more difficult
adversaries.

A well-defined threat model can be a useful tool to focus security mitigation
efforts. When building security systems, like most engineering exercises,
there is a tendency to focus on the fancier aspects of the engineering problem
to the detriment of the more boring but still important parts. This tendency is
especially worrisome in a security system, since the weakest link in the
system is where attackers will quickly focus their attention. Therefore, the
threat model serves as a mechanism for focusing our attention on a single
threat and fully mitigating their attacks. Threat models can also be useful
when prioritizing security initiatives. Fighting state-level actors is pointless
if a system’s security measures are insufficient to defend against a simple
brute-force attack on a user’s poor password. As such, it is important to start
first with simpler personas when building a threat model.

Common Threat Models
There are many different techniques for threat modeling in the security field.
Here are some of the more popular ones:

STRIDE

DREAD

PASTA

Trike

https://oreil.ly/BaQnu
https://oreil.ly/YmbFx
https://oreil.ly/GYJmY
https://oreil.ly/D9kfk

VAST

MITRE ATT&CK

The varying threat modeling techniques provide different frameworks for
exploring the threat space. Each of them is after the same goal: to enumerate
threats to the system and further enumerate the mitigating systems and
processes for those threats. Different threat models approach the problem
from different angles. Some modeling systems might focus on the assets that
an attacker would be targeting. Others might look at each software
component in isolation and enumerate all the attacks that could be applied to
that system. Finally, some models might look at the system as a whole from
the attacker’s perspective: as an attacker, how might I approach penetrating
this system? Each of these approaches has pros and cons. For a well-
diversified mitigating strategy, a blend of the three approaches is ideal.

If we look at the attacker-based threat modeling methodology, we are able to
categorize attackers into a list of increasing capabilities (ordered from least
to most threatening):

Opportunistic attackers

So-called script kiddies, who are unsophisticated attackers
taking advantage of well-known vulnerabilities with no
predetermined target.

Targeted attackers

Attackers who craft specialized attacks against a particular
target. Spear phishing and corporate espionage might fall
into this bucket.

Insider threats

A credentialed but everyday user of a system. Contractors
and unprivileged employees generally fall into this bucket.

Trusted insider

https://oreil.ly/5rokS
https://oreil.ly/_BS0N

A highly trusted administrator of a system.

State-level actor

Attackers backed by foreign or domestic governments and
assumed to have vast resources and positioning capabilities
to attack a target.

Categorizing threats like this is a useful exercise to focus discussion around a
particular level to mitigate against. We will discuss which level zero trust
targets in the next section.

THREATS VERSUS VULNERABILITIES?
While the terms threat and vulnerability may appear to be synonymous, they are fundamentally
different in the context of security. A threat is an event (which can be based on hardware, software,
a person, a process, or even nature) that has the potential to negatively impact a valuable resource.
A vulnerability, on the other hand, is a flaw in a resource or its surroundings that allows a threat to be
realized.

It is critical to document and manage vulnerabilities. As a result, standard bodies such as NIST and
nonprofit organizations such as MITRE offer repositories and programs for vulnerability assessment
and management:

Common Vulnerability Scoring System (CVSS)

This is a vulnerability management system by NIST that is widely used. CVSS
ranks the severity of an information security vulnerability and is used in many
vulnerability scanning tools.

Common Vulnerabilities and Exposures (CVE)

This is an MITRE-maintained list of publicly disclosed vulnerabilities and
exposures.

National Vulnerability Database (NVD)

This is a NIST database that is fully synchronized with the MITRE CVE list.

Zero Trust’s Threat Model

https://oreil.ly/Yxt3l
https://oreil.ly/bG2Jj
https://oreil.ly/zByoD

RFC 3552 describes the internet threat model. Zero trust networks generally
follow the internet threat model to plan their security stance. While reading
the entire RFC is recommended, here is a relevant excerpt:

The Internet environment has a fairly well understood threat model. In
general, we assume that the end-systems engaging in a protocol
exchange have not themselves been compromised. Protecting against an
attack when one of the end-systems has been compromised is
extraordinarily difficult. It is, however, possible to design protocols
which minimize the extent of the damage done under these
circumstances.

By contrast, we assume that the attacker has nearly complete control of
the communications channel over which the end-systems communicate.
This means that the attacker can read any PDU (Protocol Data Unit) on
the network and undetectably remove, change, or inject forged packets
onto the wire. This includes being able to generate packets that appear
to be from a trusted machine. Thus, even if the end-system with which
you wish to communicate is itself secure, the Internet environment
provides no assurance that packets which claim to be from that system
in fact are.

Zero trust networks, as a result of their control over endpoints in the network,
expand upon the internet threat model to consider compromises at the
endpoints.

The response to these threats is generally to first harden the systems
proactively against compromised peers, and then facilitate detection of those
compromises. Detection is aided by scanning of devices and behavioral
analysis of the activity from each device. Additionally, mitigation of endpoint
compromise is achieved by frequent upgrades to software on devices,
frequent and automated credential rotation, and in some cases, frequent
rotation of the devices themselves.

An attacker with unlimited resources is essentially impossible to defend
against, and zero trust networks recognize that. The goal of a zero trust

https://oreil.ly/RDOqs

network isn’t to defend against all adversaries, but rather the types of
adversaries that are commonly seen in a hostile network.

From our earlier discussion of attacker capabilities, a zero trust network is
generally attempting to mitigate attacks up to and including attacks originating
from a “trusted insider” level of access. Most organizations do not
experience attacks that exceed this level of sophistication. Developing
mitigations against these attackers will defend against the vast majority of
compromises and would be a dramatic improvement for the industry’s
security stance.

Zero trust networks generally do not try to mitigate all state-level actors,
though they do attempt to mitigate those attempting to compromise their
systems remotely. State-level actors are assumed to have vast amounts of
money, so many attacks that would be infeasible for lesser organizations are
available to them. Additionally, local governments have physical and legal
access to many of the systems that organizations depend upon for securing
their networks.

Defending against these localized threats is exceedingly expensive, requiring
dedicated physical hardware, and most zero trust networks consider the more
extreme forms of attacks (say, a vulnerability being inserted into a hypervisor
that copies memory pages out of a VM) out of scope in their threat models.
We should be clear that while security best practices are still very much
encouraged, the zero trust model only requires the safety of information used
to authenticate and authorize actions, such as on-disk credentials. Further
requirements on endpoints, say full disk encryption, can be applied via
additional policy.

Strong Authentication
Knowing how much to trust someone is useless without being able to
associate a real-life person with that identity you know to trust. Humans have
many senses to determine if the person in front of them is who they think they
are. Turns out, combinations of senses are hard to fool.

Computer systems, however, are not so lucky. It’s more like talking to
someone on the phone. You can listen to their voice, read their caller ID, ask
them questions...but you can’t see them. Thus, we are left with a challenge:
how can one be reasonably assured that the person (or system) on the other
end of the line is in fact who they say they are?

Typically, operators examine the IP address of the remote system and ask for
a password. Unfortunately, these methods alone are insufficient for a zero
trust network, where attackers can communicate from any IP they please and
insert themselves between you and a trusted remote host. Therefore, it is very
important to employ strong authentication on every flow in a zero trust
network. The most widely accepted method to accomplish this is a standard
named X.509, which most engineers are familiar with. It defines a certificate
standard that allows identity to be verified through a chain of trust. It’s
popularly deployed as the primary mechanism for authenticating Transport
Layer Security (TLS), formerly Secure Sockets Layer (SSL) connections.

Certificates utilize two cryptographic keys: a public key and a private key.
The public key is distributed, and the private key is held as a secret. The
public key can encrypt data that the private key can decrypt, and vice versa,
as shown in Figure 2-2. This allows one to prove they are in the presence of
the private key by correctly decrypting a piece of data that was encrypted by
the well-known (and verifiable) public key. In this way, identity can be
validated without ever exposing the secret.

TLS IS ANONYMOUS
The most widely consumed TLS configuration validates that the client is speaking to a trusted
resource, but not that the resource is speaking to a trusted client. This poses an obvious problem for
zero trust networks.

TLS additionally supports mutual authentication, in which the resource also validates the client. This
is an important step in securing private resources; otherwise, the client device will go
unauthenticated. More on zero trust TLS configuration in “Mutually Authenticated TLS (mTLS)”.

Certificate-based authentication lets us be certain that the person on the other
end of the line has the private key, and also lets us be certain that someone
listening in can’t steal the key and reuse it in the future. It does, however, still
rely on a secret, something that can be stolen. Not necessarily by listening in,
but perhaps by a malware infection or physical theft.

So while we can validate that credentials are legitimate, we might not trust
that they have been kept a secret. For this reason, it is desirable to use
multiple secrets, stored in different places, which in combination grant
access. With this approach, a potential attacker must steal multiple
components.

Figure 2-2. Bob can use Alice’s well-known public key to encrypt a message that only Alice is
able to decrypt

While having multiple components goes a long way in preventing
unauthorized access, it is still conceivable that all these components can be
stolen. Therefore, it is critical that all authentication credentials be time-
boxed. Setting an expiration on credentials helps to minimize the blast radius

of leaked or stolen keys and gives the operator an opportunity to reassert
trust. The act of changing, or renewing, keys/passwords is known as
credential rotation.

Credential rotation is essential for validating that no secrets have been
stolen, and they should be revoked when required. Systems utilizing
keys/passwords that are hard or impossible to rotate should be avoided at all
costs, and when building new systems this fact should be taken into account
early on in the design process. The rotation frequency of a particular
credential is often inversely proportional to the cost of rotation.

EXAMPLES OF SECRETS EXPENSIVE TO ROTATE
Certificates requiring external coordination

Hand-configured service accounts

Database passwords requiring downtime to reset

A site-specific salt that cannot be changed without invalidating all stored hashes

Authenticating Trust
We spoke a little bit about certificates and public key cryptography.
However, certificates alone don’t solve the authentication issue. For
instance, you can be assured that a remote entity is in possession of a private
key by making an assertion using its public key. But how do you obtain the
public key to begin with? Sure, public keys don’t need to be secret, but you
must still have a way to know that you have the right public key. Public key
infrastructure, or PKI, defines a set of roles and responsibilities that are used
to securely distribute and validate public keys in untrusted networks.

The goal of a PKI system is to allow unprivileged participants to validate the
authenticity of their peers through an existing trust relationship with a mutual
third party. A PKI system leverages what is known as a registration authority
(RA) in order to bind an identity to a public key. This binding is embedded in

the certificate, which is cryptographically signed by the trusted third party.
The signed certificate can then be presented in order to “prove” identity, so
long as the recipient trusts the same third party.

There are many types of PKI providers. The most popular two are certificate
authorities (CAs) and webs of trust (WoTs). The former relies on a signature
chain that is ultimately rooted in the mutually trusted party. The latter allows
systems to assert the validity of their peers, forming a web of endorsements
rather than a chain. Trust is then asserted by traversing the web until a trusted
certificate is found. While this approach is in relatively wide use with Pretty
Good Privacy (PGP) encryption, this book will focus on PKI systems that
employ a CA, the popularity of which overshadows the WoT provider.

What Is a Certificate Authority?
Certificate authorities act as the trust anchor of a certificate chain. They sign
and publish public keys and their bound identities, allowing unprivileged
entities to assert the validity of the binding through the signature.

CA certificates are used to represent the identity of the CA itself, and it is the
private key of the CA certificate that is used to sign client certificates. The
CA certificate is well known, and is used by the authenticating entity to
validate the signature of the presented client certificate. It is here that the
trusted third-party relationship exists, issuing and asserting the validity of
digital certificates on behalf of the clients. The trusted third-party position is
very privileged. The CA must be protected at all costs, since its subversion
would be catastrophic. Digital certificate standards like X.509 allow for
chaining of certificates, which enables the root CA to be kept offline. This is
considered standard practice in CA-based PKI security. We’ll talk more
about X.509 security in Chapter 5.

Importance of PKI in Zero Trust
All zero trust networks rely on PKI to prove identity throughout the network.
As such, it acts as the bedrock of identity authentication for the majority of

operations. Entities that might be authenticated with a digital certificate
include:

Devices

Users

Applications

BINDING KEYS TO ENTITIES
PKI can bind an identity to a public key, but what about a private key to the entity it is meant to
identify? After all, it is the private key that we are really authenticating. It is important to keep the
private key as close to the entity it was meant to represent as possible. The method by which this is
done varies by the type of entity. For instance, a user might store a private key on a smart card in
their pocket, whereas a device might store a private key in an onboard security chip. We’ll discuss
which methods best fit which entities in Chapters 5, 6, and 7.

Given the sheer number of certificates that a zero trust network will issue, it
is important to recognize the need for automation. If humans are required in
order to process certificate signing requests, the procedure will be applied
sparingly, weakening the overall system. That being said, you will likely
wish to retain a human-based approval process for certificates deemed
highly sensitive.

Private Versus Public PKI
PKI is perhaps most popularly deployed as a public trust system, backing
X.509 certificates in use on the public internet. In this mode, the trusted third
party is publicly trusted, allowing clients to authenticate resources that
belong to other organizations.

While public PKI is trusted by the internet at large, it is not recommended for
use in a zero trust network.

Some might wonder why this is. After all, public PKI has some defensible
strengths. Factors like existing utilities/tooling, peer-reviewed security

practices, and the promise of a better time to market are all attractive. There
are, however, several drawbacks to public PKI that work against it. The first
is cost.

The public PKI system relies on publicly trusted authorities to validate
digital certificates. These authorities are businesses of their own, and usually
charge a fee for signing certificates. Since a zero trust network has many
certificates, the signing costs associated with public authorities can be
prohibitive, especially when considering rotation policies.

Another significant drawback to public PKI is the fact that it’s hard to fully
trust the public authorities. There are lots of publicly trusted CAs, operating
in many countries. In a zero trust network leveraging public PKI, any one of
these CAs can cut certificates that your network trusts. Do you trust the laws
and the governments associated with all of those CAs too? Probably not.
While there are some mitigation methods here, like certificate pinning or
installing trust in a single public CA, it remains challenging to retain trust in
a disjointed organization.

Finally, flexibility and programmability can suffer when leveraging public
CAs. Public CAs are generally interested in retaining the public’s trust, so
they do employ good security measures. This might include policies about
how certificates are formed, and what information can be placed where. This
can adversely affect zero trust authentication in that it is often desirable to
store site-specific metadata in the certificate, like a role or a user ID.
Additionally, not all public CAs provide programmable interfaces, making
automation a challenge.

Public PKI Is Better than None
While the drawbacks associated with public PKI are significant, and the
authors heavily discourage its use within a zero trust network, it remains
superior to no PKI at all. A well-automated PKI system is the first step, and
work will be required in this area no matter which PKI approach you choose.
The good news is that if you choose to leverage public PKI initially, there is
a clear path to switch to private PKI once the risk becomes too great. It begs

the question, however, if it is even worth the effort, since automation of those
resources will still be required.

Least Privilege
The principle of least privilege is the idea that an entity should be granted
only the privileges it needs to get its work done. By granting only the
permissions that are always required, as opposed to sometimes desired, the
potential for abuse or misuse by a user or application is greatly reduced.

In the case of an application, that usually means running it under a service
account, in a container or jail, etc. In the case of a human, it commonly
manifests itself as policies like “only engineers are allowed access to the
source code.” Devices must also be considered in this regard, though they
often assume the same policies as the user or application they were
originally assigned to.

PRIVACY AS LEAST PRIVILEGE
The application of encryption in the name of privacy is an often overlooked application of least
privilege. Who really needs access to the packet payload?

Another effect of this principle is that if you do need elevated access, you
retain those access privileges for only as long as you need them. It is
important to understand what actions require which privileges so that they
may be granted only when appropriate. This goes one step beyond simple
access control reviews.

This means that human users should spend most of their time executing
actions using a nonprivileged user account. When elevated privileges are
needed, the user needs to execute those actions under a separate account with
higher privileges. On a single machine, elevating one’s privileges is usually
accomplished by taking an action that requires the user to authenticate
themselves. For example, on a Unix system, invoking a command using the

sudo command will prompt the user to enter their password before running
that command as a different role. In GUI environments, a dialog box might
appear requiring the user’s password before performing the risky operation.
By requiring interaction with the user, the potential for malicious software to
take action on behalf of the user is (potentially) mitigated.

In a zero trust network, users should similarly operate in a reduced privilege
mode on the network most of the time, only elevating their permissions when
needed to perform some sensitive operation. For example, an authenticated
user might freely access the company’s directory or interact with project
planning software. Accessing a critical production system, however, should
require additional confirmation that the user or the user’s system is not
compromised. For relatively low-risk actions, this privilege elevation could
be as simple as re-prompting for the user’s password, requesting a second
factor token, or sending a push notification to the user’s phone. For high-risk
access, one might choose to require active confirmation from a peer via an
out-of-band request.

HUMAN-DRIVEN AUTHENTICATION
For particularly sensitive operations, an operator may rely on the coordination of multiple humans,
requiring a number of people to be actively engaged in order to authenticate a particular action.
Forcing authentication actions into the real world is a good way to ensure a compromised system
can’t interfere with them. Be careful, however—these methods are expensive and will become
ineffective if employed too frequently.

Like users, applications should also be configured to have the fewest
privileges necessary to operate on the network. Sadly, applications deployed
in a corporate setting are often given fairly wide access on the network.
Either due to the difficulty of defining policies to rein in applications, or the
assumption that compromised users are the more likely target, it’s now
become commonplace for the first step in setting up a machine to be
disabling the application security frameworks that are meant to secure the
infrastructure.

Beyond the traditional consideration of privilege for users and applications,
zero trust networks also consider the privilege of the device on the network.
It is the combination of user or application and the device being used that
determines the privilege level granted. By joining the privilege of a user to
the device being used to access a resource, zero trust networks are able to
mitigate the effects of lost or compromised credentials. Chapter 3 will
explore how this marriage of devices and users works in practice.

Privilege in a zero trust network is more dynamic than in traditional
networks. Traditional networks eventually converge on policies that stay
relatively static. If new use cases appear that require greater privilege, either
the requestor must lobby for a change in policy; or, perhaps more frequently,
ask someone with greater privilege (a sysadmin, for example) to perform the
operation for them. This static definition of policy presents two problems.
First, in more permissive organizations, privilege will grow over time,
lessening the benefit of least privilege. Second, in both permissive and
restrictive organizations, admins are given greater access, which has resulted
in malicious actors purposefully targeting sysadmins for phishing attacks.

A zero trust network, by contrast, will use many attributes of activity on the
network to determine a riskiness factor for the access being requested
currently. These attributes could be temporal (access outside of the normal
window activity for that user is more suspicious), geographical (access from
a different location than the user was last seen), or even behavioral (access
to resources the user does not normally access). By considering all the
details of an access attempt, the determination of whether the action is
authorized or not can be more granular than a simple binary answer. For
example, access to a database by a given user from their normal location
during typical working hours would be granted, but access from a new
location at different working hours might require the user to authenticate
using an additional factor.

The ability to actively adjust access based on the riskiness of activity on a
network is one of the several features that make zero trust networks more
secure. By dynamically adjusting policies and access, these networks are

able to respond autonomously to known and unknown attacks by malicious
actors.

Dynamic Trust
Managing trust is perhaps the most difficult aspect of running a secure
network. Choosing which privileges people and devices are allowed on the
network is time-consuming, constantly changing, and directly affects the
security posture the network presents. Given the importance of trust
management, it’s surprising how under-deployed network trust management
systems are today.

Definition of trust policies is typically left as a manual effort for security
engineers. Cloud systems might have managed policies, but those policies
provide only basic isolation (e.g., super user, admin, regular user), which
advanced users typically outgrow. Perhaps in part due to the difficulty of
defining and maintaining them, requests to change existing policies can be
met with resistance. Determining the impact of a policy change can be
difficult, so prudence pushes the administrators toward the status quo, which
can frustrate end users and overwhelm system administrators with change
requests.

Policy assignment is also typically a manual effort. Users are granted
policies based on their responsibilities in the organization. This role-based
policy system tends to produce large pools of trust in the administrators of
the network, weakening the overall security posture of the network. These
pools of trust have created a market for hackers to hunt for system admin
accounts, like the Conti ransomware group, which seeks out and
compromises system administrators as the final step in their ransomware
attack. Cybercriminal organizations, such as LAPSUS$, actively recruit
company insiders to assist them in gaining access to corporate networks via
VPN or Citrix, as shown in Figure 2-3. Their goal is to gain access to the
network, preferably using employee credentials that grant them privileged
access. LAPSUS$ has used this method successfully against Samsung,
NVIDIA, Vodafone, Microsoft, and Okta in recent years. Perhaps the gold

https://oreil.ly/SgLGb
https://oreil.ly/BvwcL

standard for a secure network is one that does not have access to highly
privileged system administrators.

Figure 2-3. Cybercrime group LAPSUS$’s message on the Telegram channel for recruiting
employees/insiders

These pools of trust underscore the fundamental issue with how trust is
managed in traditional networks: policies are not nearly dynamic enough to
respond to the threats being leveled against the network. Mature
organizations will have some sort of auditing process in place for activity on
their network, but audits can be done too infrequently, and are frankly so
tedious that doing them well is difficult for humans. How much damage could
a rogue sysadmin do on a network before an audit discovered their behavior
and mitigated it? A more fruitful path might be to rethink the actor/trust

relationship, recognizing that trust in a network is ever-evolving and based
on the previous and current actions of an actor within the network.

This model of trust, considering all the actions of an actor and determining
their trustworthiness, is not novel. Credit agencies have been performing this
service for many years. Instead of requiring organizations like retailers,
financial institutions, or even an employer to independently define and
determine one’s trustworthiness, a credit agency can use actions in the real
world to score and gauge the trustworthiness of an individual. The consuming
organizations can then use their credit score to decide how much trust to
grant that person. In the case of a mortgage application, an individual with a
higher credit score will receive a better interest rate, which mitigates the risk
to the lender. In the case of an employer, one’s credit score might be used as
a signal for a hiring decision. On a case-by-case basis, these factors can feel
arbitrary and opaque, but they serve a useful purpose; providing a mechanism
for defending a system against arbitrary threats by defining policy based not
only on specifics, but also on an ever-changing and evolving score, which
we call a “trust score.”

Trust Score
A zero trust network utilizes trust scores to define trust within the network, as
shown in Figure 2-4. Instead of defining binary policy decisions assigned to
specific actors in the network, a zero trust network will continuously monitor
the actions of an actor on the network to update their trust score. This score
can then be used to define policy in the network based on the severity of
breach of that trust (Figure 2-5). A user viewing their calendar from an
untrusted network might require a relatively low trust score. However, if that
same user attempted to change system settings, they would require a much
higher score and their request would be denied or flagged for immediate
review. Even in this simple example, one can see the benefit of a score: we
can make fine-grained determinations on the checks and balances needed to
ensure trust is maintained.

Figure 2-4. Using a trust score allows fewer policies to provide the same amount of access

Figure 2-5. The trust engine calculates a score and forms an agent, which is then compared
against policy in order to authorize a request. We’ll talk more about agents in Chapter 3.

MONITORING ENCRYPTED TRAFFIC
Since practically all flows in a zero trust network are encrypted, traditional traffic inspection methods
don’t work as well as intended. Instead, we are limited to inspecting what we can see, which in most
cases is the IP header and perhaps the next protocol header (like TCP in the case of TLS). If a load
balancer or proxy is in the request path, however, there is an opportunity for deeper inspection and
authorization, since the application data will be exposed for examination.

Clients begin sessions as untrusted. They must accumulate trust through
various mechanisms, eventually accruing enough to gain access to the service
they’re requesting. Strong authentication proving that a device is company
owned, for instance, might accumulate a good bit of trust, but not enough to
allow access to the billing system. Providing the correct RSA token might
give you a good bit more trust, enough to access the billing system when
combined with the trust inferred from successful device authentication.

STRONG POLICY AS A TRUST BOOSTER
Things like score-based policies, which can affect the outcome of an authorization request based on
a number of variables like historical activity, drastically improve a network’s security stance when
compared to static policy. Sessions that have been approved by these mechanisms can be trusted
more than those that haven’t. In turn, we can rely (a little bit) less on user-based authentication
methods to accrue the trust necessary to access a resource, improving the overall user experience.

Challenges with Trust Scores
Switching to a trust score model for policies, which we introduced in
Chapter 1, is not without drawbacks. The first hurdle is whether a single
score is sufficient for securing all sensitive resources. In a system where a
trust score can decrease based on user activity, a user’s score can also
increase based on a history of trustworthy activity. Could it be possible for a
persistent attacker to slowly build their credibility in a system to gain more
access?

Perhaps slowing an attacker’s progress by requiring an extended period of
“normal” behavior would be sufficient to mitigate that concern, given that an

external audit would have more opportunity to discover the intruder. Another
way to mitigate that concern is to expose multiple pieces of information to
the control plane so that sensitive operations can require access from trusted
locations and persons. Binding a trust score to device and application
metadata allows for flexible policies that can declare absolute requirements
yet still capture the unknown unknowns through the computed trust score.

Loosening the coupling between security policy and a user’s organizational
role can cause confusion and frustration for end users. How can the system
communicate to users that they are denied access to some sensitive resource
from a coffee shop, but not from their home network? Perhaps we present
them with increasingly rigorous authentication requirements? Should new
members be required to live with lower access for a time before their score
indicates that they can be trusted with higher access? Maybe we can accrue
additional trust by having the user visit a technical support office with the
device in question. All of these are important points to consider. The route
one takes will vary from deployment to deployment.

Control Plane Versus Data Plane
The roles of the zero trust control plane and data plane are introduced in
Chapter 1. The distinction between the control plane and the data plane is a
concept that is commonly referenced in network systems. The basic idea is
that a network device has two logical domains with a clear interface between
those domains. The data plane is the relatively dumb layer that manages
traffic on the network. Since that layer is handling high rates of traffic, its
logic is kept simple and often pushed to specialized hardware. The control
plane, conversely, could be considered the brains of the network device. It is
the layer that system administrators apply configuration to, and as a result is
more frequently changed as policy evolves.

Since the control plane is so malleable, it is unable to handle a high rate of
traffic on the network. Therefore, the interface between the control plane and
the data plane needs to be defined in such a way that nearly any policy
behavior can be implemented at the data layer, with infrequent requests being
made to the control plane (relative to the rate of traffic).

A zero trust network also defines a clear separation between the control
plane and data plane. The data plane in such a network is made up of the
applications, firewalls, proxies, and routers that directly process all traffic
on the network. These systems, being in the path of all connections, need to
quickly make determinations of whether traffic should be allowed. When
viewing the data plane as a whole, it has broad access and exposure
throughout the system, so it is important that the services on the data plane
cannot be used to gain privilege in the control plane and thereby move
laterally within the network. We’ll discuss control plane security in
Chapter 4.

The control plane in a zero trust network is made up of components that
receive and process requests from data plane devices that wish to access (or
grant access to) network resources, as shown in Figure 2-6. These
components will inspect data about the requesting system to make a
determination on how risky the action is, and examine relevant policy to
determine how much trust is required. Once a determination is made, the data
plane systems are signaled or reconfigured to grant the requested access.

The mechanism by which the control plane affects change in the data plane is
of critical importance. Since the data plane systems are often the entry point
for attackers into a network, the interface between it and the control plane
must be clear, helping to ensure that it cannot be subverted to move laterally
within the network. Requests between the data plane and control plane
systems must be encrypted and authenticated using a nonpublic PKI system to
ensure that the receiving system is trustworthy. The control/data plane
interface should resemble the user/kernel space interface, where interactions
between those two systems are heavily isolated to prevent privilege
escalation.

This concern with the interface between the control plane and the data plane
belies another fundamental property of the control plane: the control plane is
the trust grantor for the entire network. Due to its far-reaching control of the
network’s behavior, the control plane’s trustworthiness is critical. This need
to have an actor on the network with a highly privileged role presents a
number of interesting design requirements.

Figure 2-6. A zero trust client interacting with the control plane in order to access a resource

The first requirement is that the trust granted by the control plane to another
actor in the data plane should have limited real-time value. Trust should be
temporary, requiring regular check-ins between the truster and trustee to
ensure that the continued trust is reasonable. When implementing this tenet,
leased access tokens or short-lifetime certificates are the most appropriate
solution. These leased access tokens should be validated not just within the
data plane (e.g., when the control plane grants a token to an agent to move
through the data plane), but also between the interaction between the data
plane and the control plane. The control plane decides whether or not to
allow a request by considering all of its factors. Because trust is temporary
and time bound, if and when the factors that led the control plane decision to
allow the request in the first place have changed, it may coordinate with the
data plane to revoke the request access to the resource. By limiting the
window during which the data plane and control plane can interact with a
particular set of credentials, the possibility for physical attacks against the
network is mitigated.

Summary
This chapter discussed the critical systems and concepts that are needed to
manage trust in a zero trust network. Many of these ideas are common in
traditional network security architectures, but it is important to lay the
foundation of how trust is managed in a network without any.

Trust originates from humans and flows into other systems via trust
mechanisms that a computer can operate against. This approach makes
logical sense: a system can’t be considered trusted unless the humans who
use it feel confident that it is faithfully executing their wishes.

Security has frequently been viewed as a set of best practices, which are
passed down from one generation of engineers to the next. Breaking out of
this cycle is important, since each system is unique, so we discussed the idea
of threat models. Threat models attempt to define the security posture of a
system by enumerating the threats against the system and then defining the
mitigating systems and processes that anticipate those threats. While a zero
trust network assumes a hostile environment, it is still fundamentally
grounded in the threat model, which makes sense for the system. We
enumerated several present-day threat-modeling techniques so that readers
can dig deeper. We also discussed how the zero trust model is based on the
internet threat model and expands its scope to the endpoints that are under the
control of zero trust system administrators.

Having trust in a system requires the use of strong authentication throughout
the system. We discussed the importance of this type of authentication in a
zero trust network. We also briefly talked about how strong authentication
can be achieved with today’s technology. We will discuss these concepts
more in later chapters. To effectively manage trust in a network, you must be
able to positively identify trusted information, particularly in the case of
authentication and identity. Public key infrastructure (or PKI) provides the
best methods we have today for asserting validity and trust in a presented
identity. We discussed why PKI is important in a zero trust network, the role
of a certificate authority, and why private PKI is preferred over public PKI.

Least privilege is one of the key ideas in these types of networks. Instead of
constructing a supposedly safe network over which applications can freely
communicate, the zero trust model assumes that the network is untrustworthy,
and as a result, components on the network should have minimal privileges
when communicating. We explained what the concept of least privilege is in
this context, and how it is similar to and different from least privilege in
standalone systems.

One of the most exciting ideas of zero trust networks is the idea of variable
trust. Network policy has traditionally focused on which systems are allowed
to communicate in what manner. This binary policy framework can result in
policy that is either too rigidly defined (creating human toil to continually
adjust) or too loosely defined (resulting in security systems that assert very
little). Additionally, policy that is defined based on concrete details of
interactions will invariably be stuck in a cat-and-mouse game of adjusting
policy based on past threats. The zero trust model leans on the idea of
variable trust, a numeric value representing the level of trust in a component.
Policy can then be written against this number, effectively capturing a number
of conditions without complicating the policy with edge cases. By defining
policy in less-concrete details, and considering the trust score while making
an authorization decision, the authorization systems are able to adjust to
novel threats.

Chapter 3. Context-Aware
Agents

Imagine you’re in a security-conscious organization. Each employee is given
a highly credentialed laptop to do their work. With today’s blending of work
and personal life, some also want to view their email and calendar on their
phone. In this hypothetical organization, the security team applies fine-
grained policy decisions based on which device the user is using to access a
particular resource.

For example, perhaps it is permissible to commit code from the employee’s
company-issued laptop, but doing so from their phone would be quite a
strange thing. Since source code access from a mobile device is decidedly
riskier than from an enrolled laptop, the organization blocks such access.
That said, an employee accessing corporate email from a personal device
may be permitted. As you will learn throughout this chapter, context is
critical when making decisions in a zero trust environment.

The story described here is a fairly typical application of zero trust, in that
multiple factors of authentication and authorization take place, concerning
both the user and the device. In this example, however, it is clear that one
factor has influenced the other—a user who might “normally” have source
code access won’t enjoy such access from their mobile device. Additionally,
this organization does not want authenticated users to commit code from just
any trusted device—it expects users to use their organization’s device.

This marriage of user and device is a new concept that zero trust introduces,
which we are calling an agent. In a zero trust network, it is insufficient to
treat the user and device separately, because policy often needs to consider
the two together to accurately enforce desired behavior. By defining an agent
formally in the system, we are able to capture this relationship and use it to
drive policy decisions.

This chapter will define what an agent is and how it is used. In doing that, we
will discuss the types of data that are included in an agent, some of which is
potentially sensitive. Given the nature of that data, we will discuss when and
how an agent should be exposed to data plane systems. An agent, being a new
concept, could benefit from standardization. We will explore the benefits of
standardizing this agent.

What Is an Agent?
An agent is a combination of data known about the actors in a request. This
typically consists of a user (also known as the subject), a device (an asset
used by the subject to make the request), and an application (web app,
mobile app, API endpoint, etc.). Traditionally, these entities have been
authorized separately, but zero trust networks recognize that policy is best
captured as a combination of all participants in a request. By authorizing the
entire context of a request, the impact of credential theft is greatly mitigated.

It’s best to think of an agent as an ephemeral entity that is formed on demand
to evaluate a policy. The data that is used to form an agent—user and device
information—will typically be stored in persistent storage and queried to
form an agent.

When this data is queried, the union of the data at that point in time is what
we call an agent. The benefit of this approach is that any changes to the data
used to form an agent will change the agent itself. For example, if a user’s
role changes, the agent used to evaluate policy for that user will also change.
If a device is unenrolled from the system, any agents associated with that
device will no longer be valid.

WHAT IS A SUBJECT?
The term “user” is commonly used to refer to user identity, but it is important to understand that the
term “subject” is also used, particularly by standard bodies, such as the National Institute of
Standards and Technology (NIST) and others, to define both human and nonhuman users (like
headless or machine identities). This distinction will be emphasized further in subsequent chapters
when we examine users in Chapter 6 and devices in Chapter 5. When we talk about the user in the
rest of this chapter, we mean both human and machine identities.

Agent Volatility
Some fields in the agent are made available specifically to mitigate against
active attacks, and are therefore expected to change rapidly, relative to the
infrequent changes that IT organizations normally expect. Trust scores are an
example of this type of dynamic data. Trust score systems can evaluate each
request in the network, using that activity feed to update the trust scores of
users, applications, and devices. Therefore, in order for a trust score to
mitigate a novel attack, it needs to be updated as close to real time as
possible. Chapter 4 goes into greater detail about trust scores.

In addition to rapidly changing data, agents will frequently have sparse data.
A device undergoing bootstrapping is an example scenario where the agent
will have less data when compared to a mature device. During the
bootstrapping process, little is known about the device, yet it must still
interact with corporate infrastructure to perform tasks like device enrollment
and software installation. In this case, the bootstrapping device is not yet
assigned to a user and can run into problems if policy expects an assigned
user to be present in the agent. This scenario should be expected and
reflected in the authorization policy.

Sparse data isn’t just found in bootstrapping scenarios. Autonomous systems
in a zero trust network will frequently have sparse data when compared to
human-operated systems. These systems, for example, will likely not
authenticate the user account the application runs under, relying instead on the
security of the configuration management system that created that user.

What’s in an Agent?
The granularity of data contained within an agent can vary based on needs
and maturity. It can be as high level as a user’s name or a device’s
manufacturer, or as low level as serial numbers and place of residence or
issue. Note that the more detailed data is more likely to have data cleanliness
issues, which must be dealt with.

AGENT DATA FIELDS
The type of data stored in an agent can greatly vary in both presence and granularity. Here are some
examples of data that one might find in an agent:

Agent trust score

User trust score

User role or entitlements

User groups

User location

User authentication method (MFA, password, etc.)

Device trust score

Device manufacturer

Host operating system manufacturer and version

Hardware security module (HSM) manufacturer and version

Trusted platform module (TPM) manufacturer and version

Current device location

IP address

Another point of consideration is if the data contained in the agent is trusted
or not. For instance, device data populated during the procurement process is
more trusted than device data that is reported back from an agent running on
it. This difference in trust arises from difficulties in ensuring the accuracy
and integrity of the reported information if the device is compromised.

How Is an Agent Used?
When making an authorization decision in a zero trust network, it is the agent
that is in fact authorized. While it is tempting to authorize the device and user
separately, this approach is not recommended. Since the agent is the entity
that is authorized, it is also the thing against which policy is written.

As noted in the previous section, the agent carries many pieces of
information. So while more “traditional” authorization information like IP
addresses can still be used, leveraging the agent also unlocks the use of
“nontraditional” authorization information like device type or city of
residence. As such, zero trust network policy is written considering the agent
as a whole, as opposed to crafting disjointed user and device policies. Using
an agent to drive authorization policy encourages authors to consider the
totality of the communication context. The marriage of user and device is
very important in zero trust authorization decisions, and co-locating the data
in an agent makes it difficult to ignore one or the other. As with other
portions of the zero trust architecture, lowering the barrier to entry is key,
and co-locating the data to make device/user comparisons easier is no
different.

DATA CO-LOCATION
When user and device data are combined or co-located in a request, they then form an agent. Thus,
the overall context of the request becomes much clearer.

Consider the following scenario: Adam requests access to a high-business-impact quarterly sales
report via his iPhone, running the iOS operating system, which he uses as part of Bring Your Own
Device (BYOD). If his iPhone does not have any mobile device management solution installed on it
that can perform policy enforcement, his request may be denied because the device used is not
considered trustworthy. The combination of user and device attributes is critical here; otherwise,
Adam has access to the report as a user.

An agent, being the primary actor in the network, plays an additional role in
the calculation of trust scores. The trust engine can use recorded actions, in
addition to data contained within the agent itself, to score agents for their
trustworthiness. This trust score will then be exposed as an additional

attribute of the agent against which most policy should be defined. We’ll talk
more about how the trust score is calculated in Chapter 4.

Agents Are Not for Authentication
It is important to understand the difference between authentication and
authorization in the context of an agent. Agents serve solely as authorization
components and do not play any part in authentication. In fact, authentication
is a precursor to agent formation and is generally performed separately for
user and device. For example, devices could be authenticated with X.509
certificates, while users might be authenticated through a traditional
multifactor approach.

Following successful authentication, the canonical identifiers for users and
devices can be used to form an agent and its details. A device-specific
certificate might be used as the canonical identifier for the device and
therefore be used to populate information like device type or device owner.
Similarly, a username might serve as the lookup key to populate user
information like their role in the company.

Typically, authentication is session oriented, but in the case of authorization,
it is best to be request oriented. As a result, caching the outcome of an
authentication request is permissible, but caching an agent or the result of an
authorization request is ill-advised. This is because details in the agent,
which are used to make authorization decisions, can change rapidly based on
a number of factors, and it is desirable to make authorization decisions using
the latest data. This is in contrast to authentication materials, which change
much less often and don’t directly affect authorization itself.

Finally, the act of generating an agent should be as lightweight as possible. If
agent generation is expensive, it will discourage frequent authorization
requests due to performance reasons. We will talk more about how
performance affects authorization in Chapter 4.

REVOKE AUTHORIZATION FIRST, CREDENTIALS
SECOND

Successful authentication is the act of proving one’s identity to a remote system. That verified
identity is then used to determine if the user actually has rights to access the resource in question
(the authorization). If access must be revoked, updating authorization is more effective than changing
authentication credentials. This is doubly so when considering that authentication results are typically
cached and assigned to a session identifier. The act of validating an authenticated session is really an
authorization decision.

How to Expose an Agent?
The data contained in an agent is potentially sensitive. Personally
identifiable user information (e.g., name, address, phone number) will
usually be present in the agent to facilitate detailed authorization decisions.
This data should be treated with care to protect the privacy of users.

The sensitive nature of the data extends beyond users, however. Device
details can also be sensitive data when they fall into the hands of a
determined attacker. An attacker with detailed knowledge of a user’s device
could use that data to craft a targeted remote attack, or even learn a pattern of
that user’s physical location to steal the device.

To adequately secure the sensitive agent details, the entirety of the agent
lifecycle should be contained to trusted control plane systems, which
themselves are heavily secured. These systems should be logically and
physically separated from the data plane systems, have clear boundaries, and
change infrequently.

Most policy decisions will be made in the control plane systems, since the
agent data is needed to make those decisions. However, it will often be the
case that the authorization engine in the control plane is not in the best
position to enforce application-centric policy, despite its ability to enforce
authorization on a request-by-request basis. This is especially so in user-
facing systems. As a result, some agent details will need to be exposed to
data plane systems.

Let’s look at an example. An administrative application stores details on all
the customers of a particular company. This system exposes that data to
employees based on their role within the company. A search feature allows
employees to search within the subset of data that they are allowed to access.
The application needs to implement this logic, and it needs access to the
roles of the users to do so.

To allow applications to implement their own fine-grained authorization
logic, agent details can be exposed to applications via a trusted
communication channel. This could be as simple as injecting headers into
network requests that flow through a reverse proxy. The proxy, being a zero
trust control plane system, can view the agent to enforce its own
authorization decisions and expose a subset of the data to the downstream
application for further authorization.

Exposing agent details to the downstream application can also be useful to
enable compatibility with preexisting applications that have a rich
authorization system. This compatibility goal highlights that agent details
should be exposed to the application in a format that is preferred by the
application. For third-party applications, the format of the agent data will
vary. For first-party applications, a common structure for the agent data will
ease management of the system.

Rigidity and Fluidity, at the Same Time
Knowing the format of an agent, and where to find particular pieces of data
within it, is very important when considering how and by what it will be
consumed. The “coordinates” of certain pieces of data must be fixed and
well known in order to ensure consistency across control plane systems. A
good analogy here is the schema of a relational database, which applications
accessing the data must have knowledge of in order to extract the right pieces
of information.

This data compatibility is extremely important when it comes to
implementing and maintaining zero trust control plane systems. Zero trust
networks, particularly more mature ones, are likely to construct an agent from

multiple systems and data sources. Without a schema of sorts, not only will it
be difficult to surface the data in a consistent manner, but it will also
contribute negatively to the amount of effort required to introduce new
control plane systems or agent data, something that is considered critical for
a maturing zero trust network.

One thing to keep in mind, however, is that agent data is likely to be fairly
sparse, thanks to the practically unavoidable data cleanliness issues
encountered in source systems like device inventories. The result is a “best-
effort” agent, where many fields may be unpopulated for one reason or
another. Rather than seeking data cleanliness (a problem that only gets harder
with scale), it is best to accept reality and craft policy that understands that
not all data may be present. So while one may still require a particular piece
of data to be present in the agent, it is a useful thought exercise to consider
alternative pieces of data that are appropriate replacements in its absence.

Standardization Desirable
One might wonder how it would be possible to standardize a data format that
is so seemingly inextricably tied to the organization consuming it. After all,
an agent is likely to contain information types that relate to business logic or
other proprietary/local information. Is standardization even feasible in such a
case?

Luckily, there are already some standards out there defining data formats that
behave in such a way. One of the best examples is the Simple Network
Management Protocol (SNMP) and its associated management information
base (MIB).

The SNMP is a protocol frequently used for network device management,
allowing devices to expose data to operators and management systems in a
standard yet flexible way. The MIB component describes the format of the
data itself, which is a collection of OIDs, or object identifiers. Each OID
describes (and is reserved for) a particular piece of data and is registered
with the ISO, or International Organization for Standardization. This lends
itself well to widely accepted “coordinates” for certain pieces of data. Let’s

look at an example, shown in Figure 3-1, of a simplified set of nodes in an
OID tree.

Figure 3-1. A simplified diagram showing the organization of nodes in an object identifier (OID)
tree

In this example, the “IP” node and associated data would be addressed as
1.3.6.1.1.1.4. An MIB arranges and gives color to a set of OIDs. For
example, a Cisco MIB might provide definitions for all OIDs under the
1.3.6.1.4.1.9 portion of the tree, including human-readable descriptions.

Of course, this registered list can be extended, and oftentimes chunks of OID
space are carved out for organizations or manufacturers. In this way, an OID
can be compared to an IP address, where an IP address globally identifies a
computer system, and an OID globally identifies a piece of data.

Unfortunately, there is no good OID equivalent of private IP address space,
which would be useful for ad hoc or site-specific data. The best available
compromise is to register for a Private Enterprise Number with IANA,
which will give you a dedicated OID prefix for private use. Luckily, such
registration is free and with few questions asked. There have been some
efforts to create a private range similar to that found in IP. However, such
efforts have been unsuccessful. Despite the lack of a truly free/private OID
space for experimental or internal use, the SNMP remains a useful analogy to
make when considering the standardization of an agent. It describes the
format and packaging of a set of data—data that is easily found and identified
using unique OIDs—and how that data can be transmitted and understood
from one system to another.

In the Meantime?
While there have been several developments in zero trust networks in recent
years, and standard bodies such as NIST and others have issued architecture
guidance, agent standardization remains primarily an implementation task. In
the meantime, agents take the form of least resistance, given the needs of the
implementor. Whether it be a JSON blob, signed and encrypted JSON Web
Token (JWT), Protocol Buffers, FlatBuffers, or any other custom binary
format, it is recommended to ensure that the data contained within it is
flexible and easily extensible. Loose typing or no typing should be preferred
over strong typing, as the latter will make introducing new data and systems
more difficult. Pluggable design patterns may help in moving to a
standardized agent in the future. However, this is far from required, and
should not be pursued if they impede the adoption of agent authorization in
your network.

The following is an illustration of a possible JSON script that carries an
agent’s information:

{

 "iss": "Wayne Corporation ",

 "iat": 1676938201,

 "exp": 1708474201,

https://oreil.ly/qtnc-
https://oreil.ly/6jXf0
https://oreil.ly/xnTVO
https://oreil.ly/2JEOq
https://oreil.ly/-8pBw

 "aud": "APP01091",

 "sub": "bob@waynecorp.com",

 "given_name": "Bob",

 "email": "bob@waynecorp.com",

 "assigned_roles": [

 "Manager",

 "Project Administrator"

],

 "device_id": "D98VCVQ3JMBH",

 "device_patched": "yes",

 "device_os_version": "13.2 (22D49)",

 "device_os_type": "MacOS",

 "user_id": "UID1233",

 "user_location": "Dallas,TX",

 "user_ip_address": "1.2.3.4",

 "user_auth_method": "X.509",

 "trust_score": "7"

}

Once signed and encoded, the JSON yields a JWT that looks like the one
below. Any common JWT decoder will work to decode it. For instance, by
pasting the encoded token into a website like https://jwt.io, you can decode
its content online. Note that you can also encrypt the token, though the
example omits this step for clarity.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJXYXluZSBDb3Jwb3JhdGlvbiAi

LCJpYXQiOjE2NzY5MzgyMDEsImV4cCI6MTcwODQ3NDIwMSwiYXVkIjoiQVBQMDEwOTEiLCJzd

WIiOiJib2JAd2F5bmVjb3JwLmNvbSIsImdpdmVuX25hbWUiOiJCb2IiLCJlbWFpbCI6ImJvYk

B3YXluZWNvcnAuY29tIiwicm9sZSI6WyJNYW5hZ2VyIiwiUHJvamVjdCBBZG1pbmlzdHJhdG9

yIl0sImRldmljZV9pZCI6IkQ5OFZDVlEzSk1CSCIsImRldmljZV9wYXRjaGVkIjoieWVzIiwi

ZGV2aWNlX29zX3ZlcnNpb24iOiIxMy4yICgyMkQ0OSkiLCJkZXZpY2Vfb3NfdHlwZSI6Ik1hY

09TIiwidXNlcl9pZCI6IlVJRDEyMzMiLCJ1c2VyX2xvY2F0aW9uIjoiRGFsbGFzLFRYIiwidX

Nlcl9pcF9hZGRyZXNzIjoiMS4yLjMuNCIsInVzZXJfYXV0aF9tZXRob2QiOiJYLjUwOSIsInR

ydXN0X3Njb3JlIjoiNyJ9.eSE9Onzyb3s_WGGi5kE2eaH5h8KVCSlOcCoNeWMWwOE

SHARING AGENT DATA FIELDS USING JWT
A JSON Web Token (JWT), as defined by RFC 7519, is a compact way for two parties to exchange
claims. JWTs are encoded as JSON objects that can carry the data fields needed to represent an
agent. Additionally, you can also digitally sign and encrypt the JWT when sharing information about
an agent to ensure high integrity and confidentiality.

https://oreil.ly/jyr_o

Summary
This chapter introduced the concept of an agent, a new entity in a zero trust
network against which authorization decisions are made. Adding this concept
is critical to realizing the benefits of a zero trust network.

We explored what goes into creating an agent. Agents contain rapidly
changing data and frequently have data that is unavailable or inconsistent.
Accepting that reality is important for success when introducing the agent
concept.

Agents are used purely for making authorization decisions. Authentication is
a separate concern, and the current authentication status is reflected in the
properties of an agent. Control plane systems use the agent to authorize
requests. These systems are the primary enforcers of authorization in a zero
trust network, but sometimes they must expose agent details to applications
that are better positioned to implement fine-grained authorization decisions.
We explored how to expose this data to applications while maintaining
privacy.

While standard bodies such as NIST have recently developed guidance
around zero trust, the administration side of it is still very new, and as a
result, no proven standard for agents exists. Defining a standard would allow
for better reuse and interoperability of zero trust systems, aiding the adoption
of this technology. We discussed a possible approach for standardizing the
definition of an agent.

The next chapter will focus on the systems that are responsible for
authorizing all requests in a zero trust network.

Chapter 4. Making Authorization
Decisions

Authorization is arguably the most important process occurring within a zero
trust network, and as such, making an authorization decision should not be
taken lightly. Every flow and/or request will ultimately require that a
decision be made.

The databases and supporting systems we will discuss here are the key
systems that come together to make and affect those decisions. Together, they
are authoritative for access control and thus need to be rigorously isolated
from each other. Careful distinction should be made between these
responsibilities, particularly when deciding whether to collapse them into a
single system, which should generally be avoided if possible.

Taking reality into account, this chapter will focus on the high-level
architectural arrangement of the components required to make zero trust
authorization decisions, as well as how they fit together and enforce said
decisions.

Authorization Architecture
The zero trust authorization architecture comprises four main components, as
shown in Figure 4-1:

Enforcement

Policy engine

Trust engine

Data stores

These four components are distinct in their responsibilities, and as a result,
we treat them as separate systems. From a security standpoint, it is highly
desirable that these components be isolated from each other. These systems
represent the practical crown jewels of the zero trust security model, so
special care should be taken in their maintenance and security posture. It is
critical from an implementation standpoint that isolation exists among these
components so that a breach of one does not automatically lead to a breach of
the entire system, both from a security and availability standpoint. This is
typically handled by cloud-based systems, where SaaS-based services allow
isolation based on various factors while services remain available under a
single vendor’s umbrella. Another common pattern is the use of
microservices, in which various services are distributed across providers
and are exposed via well-defined APIs. Because software systems are
typically heavily distributed these days, planning for isolation should be
prioritized early on.

Figure 4-1. Zero trust authorization system

Enforcement is the component that actually affects the outcome of the
authorization decision. It is typically manifested as a load balancer, proxy, or
even a firewall. This component interacts with the policy engine, which is
the piece that we use to make the actual decision. The enforcement
component ensures that clients are authenticated, and passes the context of
each flow/request to the policy engine. The policy engine compares the
request and its context to policy, and informs the enforcer whether the request
will be permitted or not. The enforcement components should exist in large
numbers throughout the system and should be as close to the workload as
possible.

A trust engine leverages multiple data sources in order to compute a risk
score, similar to a credit score. This score can be used to protect against
unknown unknowns, and helps keep policy strong and robust without
complicating it with edge cases and signatures. It is used by the policy engine
as an additional component by which authorization decisions can be made.
Google’s BeyondCorp is widely recognized as having pioneered this
technology. The trust engine is leveraged by the policy engine for risk
analysis purposes.

Finally, the various data stores represent the source of truth for the data being
used to inform authorization. This data is used to paint a full contextual
picture of a particular flow/request, using small authenticated bits of data as
the primary lookup keys (i.e., a username or a device’s serial number). These
data stores, be they user data, device data, or otherwise, are heavily
leveraged by both the policy engine and trust engine, and represent the
backing against which all decisions are measured.

Enforcement
The enforcement component (depicted in Figure 4-2) is a natural place to
start. It sits on the “front line” of the authorization flow and is responsible for
carrying out decisions made by the rest of the authorization system.

Figure 4-2. An agent receives a pre-authorization signal to grant access to a system using
traditional enforcement mechanisms. These systems together form the enforcement component.

Enforcement can be broken down into two primary responsibilities. First, an
interaction with the policy engine must occur. This is generally the
authorization request itself (e.g., a load balancer has received a request and
needs to know whether it is authorized or not). The second is the actual
installation and ongoing enforcement of the decision. While these two
responsibilities represent a single component in the zero trust authorization
architecture, you can choose whether they are fulfilled together or separately.

The way you choose to handle this will likely depend on your use case. For
instance, an identity-aware proxy can call the policy engine to actively
authorize a request it has received, and in the same step use the response to
either service or reject the request. This is an example of treating the
concerns as unified. Alternatively, perhaps a pre-authorization daemon
receives a request for access to a particular service, which then calls the
policy engine for authorization. Upon successful authorization, the daemon
can manipulate local firewall rules to allow the specific request. With this
approach, we rely on “standard” enforcement mechanisms that are informed/
programmed by the zero trust control plane. It should be noted, however, that

this approach requires a client-side hook in order to notify the control plane
of the authorization request. This may or may not be acceptable, depending
on the level of control you need over your devices and applications.

Placement of the enforcement component is very important. Since it
represents our control point within the data plane, we must ensure that
enforcement components are placed as close to the endpoints as possible.
Otherwise, trust can pool “behind” the enforcement component, undermining
zero trust security. Luckily, the enforcement component can be modeled as a
client of sorts and applied liberally throughout the system. This is in contrast
to the rest of the authorization components, which are modeled as services.

Policy Engine
The policy engine is the component that has the power to make a decision. It
compares the request coming from the enforcement component against policy
in order to determine whether the request is authorized or not. Once
determined, the result is returned to the enforcement piece for actual
realization.

The arrangement of the enforcement layer and policy engine allows for
dynamic, point-in-time decisions to be made, allowing revocation to occur
rapidly. As such, it is important that these components be considered
separately and independently. That is not to say, however, that they cannot be
co-located.

Depending on a number of factors, a policy engine may be found hosted side
by side with the enforcement mechanism. An example of this might be a load
balancer that authorizes requests through inter-process communication (IPC)
instead of a remote call. The most attractive benefit of this architecture is the
lower latency to authorize the request. A low-latency authorization system
enables fine-grained and comprehensive authorization of network activity;
for example, individual HTTP requests could be authorized instead of the
session-level authorization that commonly is deployed. It should be noted
that it is best to maintain process-level isolation between the policy engine
and enforcement layer. The enforcement layer, being in the user’s data path,

is more exposed; therefore, integrating the policy engine in the same process
could expose it to unwanted risk. Deploying the policy engine as its own
process goes a long way to ensure that bugs in the enforcement layer don’t
result in a policy engine compromise.

Policy Storage
The rules referenced by the policy engine need to be stored. These policy
rules are ultimately loaded into the policy engine, but it is strongly
recommended that the rules are captured outside of the policy engine itself.
Storing the policy rules in a version control system is ideal and provides
several benefits:

Changes to policy can be tracked over time.

The rationale for changing policy is tracked in the version control
system.

The expected current policy state can be validated against the actual
enforcement mechanisms.

Many of these benefits have historically been implemented using rigorous
change management procedures. In that system, changes to the system’s
configuration are requested and approved before ultimately being applied.
The resulting change management log can be used to determine why the
system is in the current state.

Moving policy definitions into version control is the logical conclusion of
change management procedures when the system can be configured
programmatically. Instead of relying on human system administrators to load
desired policy into the system, we can instead capture the policy as data that
a program can read and apply. In many ways, loading policy is then similar
to deployable software. As a result, system administrators can use standard
software development procedures (namely code review and promotion
pipelines) to manage the changes in policy.

What Makes Good Policy?
Policy in a zero trust network is in some ways similar to traditional network
security, and in other ways substantially different.

ZERO TRUST POLICY IS STILL NOT STANDARDIZED
The reality today is that zero trust policy is still not standardized in the same way as a network-
oriented policy. As a result, defining the standard policy language used in a zero trust network is a
great opportunity.

Let’s look at what’s similar first. Good policy in a zero trust network is fine-
grained. The level of granularity will vary based on the maturity of the
network, but the desired goal is policy that is scoped to the individual
resource being secured. This is not very different from a traditional network
security model that aims to segment the network to decrease attack surface
area.

The zero trust model starts to diverge from traditional network security in the
control mechanisms that are used to define policy. Instead of defining policy
in terms of network implementation details (such as IP addresses and
ranges), policy is best defined in terms of logical components in the network.
These components will generally consist of:

Network services

Device endpoint classes

User roles

SCALE IN THE AGE OF THE CLOUD: PETS VERSUS
CATTLE

As more businesses migrate to the cloud as part of what is commonly
referred to as the “digital transformation,” they are reducing their
reliance on on-premise datacenters. The cloud brings with it a level of
scale that businesses have never experienced. By utilizing lightweight
containers and server-less technologies, applications can scale in
seconds to support very high throughput and then scale back, removing
containers or server-less instances when they are no longer required;
thus, the term “cattle” is commonly used to refer to them. In contrast, in
an on-premises datacenter, physical servers are named and maintained
for years by the businesses, so they are referred to as “pets.” In the
context of zero trust, policies must be dynamic enough to work
consistently as scaling occurs, and this applies to both scaling up and
scaling down.

Defining policy from logical components that exist in the network allows the
policy engine to calculate the enforcement decisions based on its knowledge
of the current state of the network. To put this in concrete terms, a web
service running on one server today might be on a different server tomorrow,
or might even move between servers automatically as directed by a
workload scheduler. The policy that we define needs to be divorced from
these implementation details to adapt to this reality. An example of this style
of policy from the Kubernetes project is shown in Figure 4-3.

Figure 4-3. A snippet from a Kubernetes network policy. These policies use workload labels,
computing the underlying IP-based enforcement rules when and where necessary.

Although there is no single method or standard for defining policies, they are
typically configured in JSON or YAML format and are easy to understand
semantically. Consider Google’s custom access-level cloud policy, which
defines conditions for known devices, such as corporate-owned and admin-
approved devices running a known operating system:

{

 "name": "example_custom_level",

 "title": "Example custom level",

 "description": "An example custom access level.",

 "custom": {

 "expr": {

 "expression": "device.is_corp_owned == true || (device.os_type !=

OsType.OS_UNSPECIFIED && device.is_admin_approved_device == true)",

 "title": "Check for known devices",

 "description": "Permits requests from corp-owned devices and

admin-approved devices with a known OS."

 }

 }

 }

Policy in a zero trust network also leans on trust scores to anticipate
unknown attack vectors. By defining policy with a trust score component,
administrators are able to mitigate risk that otherwise can’t be captured with
a specific policy. Therefore, most policies should include a trust score
component. Check out the following example of a conditional access policy
in Microsoft’s Azure cloud that requires any user with a risk score of
“medium” or “high” to perform mandatory multifactor authentication when
signing in to an HR application. The trust score is covered in detail later in
this chapter:

{

 "displayName": "Require MFA For High/Medium Sign-in Risk",

 "state": "enabled",

 "conditions": {

 "signInRiskLevels": ["high", "medium"],

 "clientAppTypes": [

 "all"

],

 "users": {

 "includeUsers": ["*"]

 }

 },

 "grantControls": {

 "operator": "OR",

 "builtInControls": [

 "mfa"

]

 }

}

LACK OF POLICY STANDARDS
At the time of writing, there is no industry-wide standard for defining policies; however, efforts are
being made toward this by organizations such as the National Cybersecurity Center of Excellence
(NCCoE). It has created a publicly available description of the practical steps required to implement
the cybersecurity reference designs for zero trust, as well as various components of zero trust,
including policies. You can read more about this by visiting the NCCoE website.

Policy should not rely on trust scores alone. Specific characteristics of the
request being authorized can also be part of the policy definition. An
example of this might be that certain user roles should only have access to a
particular service.

Who Defines Policy?
Zero trust network policy should be fine-grained, which can place an
extraordinary burden on system administrators to keep the policy up to date.
To help spread the load of this configuration burden, most organizations
decide to distribute policy definition across teams so they can help maintain
policy for the services they own. Opening up policy definition to an entire
organization can present certain risks, like well-meaning users who create
overly broad policies, thereby increasing the attack surface area of the
system they intended to constrain. Zero trust systems lean on two
organizational workflows to counteract this exposure.

Policy Reviews
First, since policy is typically stored under version control, having another
person review changes to the policy helps ensure that changes are well
considered. Security teams can additionally review the changes and ask
probing questions to ensure that the policy being defined is as tightly scoped
as possible. Since the policy is defined using logical intent instead of
physical components, the policy will change less rapidly than if it was
defined in physical terms.

https://oreil.ly/oZS17

The second organizational measure used is to layer broad infrastructure
policy on top of fine-grained policy. For example, an infrastructure group
might rightly require that only a certain set of roles be allowed to accept
traffic from the internet. The infrastructure team will therefore define policy
that enforces that restriction, and no user-defined policy will be allowed to
circumvent it. Enforcing this constraint could take several forms: an
automated test of proposed policy, or perhaps a policy engine that will
simply refuse overly broad policy assertions from untrusted sources. Such
enforcement can also be useful for compliance and regulatory requirements.

While there is no standard zero trust process to define the policy, the Kipling
Method provides a good guideline for defining zero trust policies. This
method helps explain the Who, What, When, Where, Why, and How of
resource access policy succinctly:

Who should be allowed to access a resource? This is essentially the
identity (which can be human or machine) that is allowed to initiate the
flow.

What application/API/service is allowed to access the resource?

When is the identity permitted to access the resource? This is primarily
concerned with time frames such as office hours, etc.

Where is the resource located? This can be anywhere, including the
cloud, on-premises datacenters, etc.

Why is the identity’s access to the resource permitted? This is the
primary justification or rationale for the access and is crucial for
compliance and regulatory purposes.

How should traffic be processed as it accesses a resource?

Trust Engine
The trust engine is the system in a zero trust network that performs risk
analysis against a particular request or action. This system’s responsibility is

to produce a numeric assessment of the riskiness of allowing a particular
request/action, which the policy engine uses to make an ultimate
authorization decision.

The trust engine will frequently pull from data contained in authoritative
inventory systems to check the attributes of an entity when computing its
score. A device inventory, for example, could provide the trust engine with
information like the last time a device was audited or scanned for
compliance, or whether it has a particular hardware security feature.

Creating a numeric assessment of risk is a difficult task. A simple approach
would be to define a set of ad hoc rules that score an entity’s riskiness. For
example, a device that is missing the latest software patches could have its
score reduced. Similarly, a user who is continually failing to authenticate
could have their trust score reduced. While ad hoc trust scoring might be
simple to get started with, a set of statically defined rules will be insufficient
to meet the desired goal of defending against unexpected attacks. As a result,
in addition to using static rules, mature trust engines use machine learning
techniques to derive a scoring function.

Machine learning derives a scoring function by calculating observable facts
from a subset of activity data known as training data. The training data is raw
observations that have been associated with trusted or untrusted entities.
From this data, features are extracted and used to derive a computer-
generated scoring function. This scoring function, or model in machine
learning terms, is then run against a set of data that is in the same format as
the training data. The resulting scores are compared against human-defined
risk assessments, and the model’s quality can then be refined based on its
ability to correctly predict the risk associated with the data being analyzed.
A model that has sufficient accuracy can then be said to be predictive of the
riskiness of yet unseen requests in the network.

Machine learning models can learn from a variety of attributes, like the
user’s IP address, geo-location, device, and so on, to evaluate whether a
current user request is anomalous or typical in the current context. Keep in
mind that “false positives” can occur anytime. This is because there are

legitimate situations where the user activity in question is normal, but the
prediction tends to be anomalous. In real life, an example of a false positive
can be seen when a user travels to a new location, perhaps for a vacation,
and makes an access request. In this case, the machine learning model has not
yet been trained against this new user’s location, so it will most likely
identify this as an anomalous pattern. Dealing with false positives is a hot
topic in machine learning, and it’s usually improved by adjusting factors such
as learning period, precision, and recall, among others.

WHAT FACTORS SHOULD YOU CONSIDER FOR
MACHINE LEARNING?

Although it is impossible to compile an exhaustive list, consider the
following factors as a starting point while working toward the machine
learning model and training set:

IP address, Autonomous System Number (ASN), and geo-location

These are important attributes that can assist in
determining anomalous patterns by a user/device over
time.

User activity

This includes regular user requests that fall under day-to-
day productivity, like access to different applications/API
endpoints, and so on.

Privileged activity

This includes activity that typically falls under the
administrator role, but also includes practically any
activity that is categorized as privileged, such as deleting
user accounts, etc.

Dormant accounts

Accounts that have been inactive for an extended period
must be labeled as such. This aids in the detection of
unusual activity. Fraudulent account access can be
detected by identifying dormant accounts that suddenly
become active.

While machine learning is increasingly used to solve hard computational
problems, it does not obviate the need for more explicit rules in the trust

engine. Whether due to a limitation of the derived scoring models or a desire
for customization of the scoring function, trust engines will typically use a
mixture of ad hoc and machine learning scoring methods.

What Entities Are Scored?
Deciding which components of a zero trust network should be scored is an
interesting consideration. Should scores be calculated for each individual
entity (user, device, and application), for the network agent as a whole, or for
both? Let’s look at some scenarios.

Using network agents for scoring
Imagine a user’s credentials are being brute-forced by a malicious third
party. Some systems will mitigate this threat by locking the user’s account,
which can present a denial-of-service attack against that particular user. If
we were to score a user negatively based on that activity, a zero trust
network would suffer the same problem. A better approach is to realize that
we’re authenticating the network agent, and so the attacker’s network agent is
counteracted, leaving the legitimate user’s network agent unharmed. This
scenario makes a case that the network agent is the entity that should be
scored.

Using devices for scoring
But just scoring the network agent can be insufficient against other attack
vectors. Consider a device that has been associated with malicious activity.
A user’s network agent on that device may be showing no signs of malicious
behavior, but the fact that the agent is being formed with a suspected device
should clearly have an impact on the trust score for all requests originating
from that device. This scenario strongly suggests that the device should be
scored.

Finally, consider a malicious human user (the infamous internal threat) who
is using multiple kiosk devices to exfiltrate trade secrets. We’d like the trust
engine to recognize this behavior as the user hops across devices and to
reflect the decreasing level of trust in their trust score for all future

authorization decisions. Here again, we see that scoring the network agent
alone is insufficient for mitigating common threats. Taken as a whole, it
seems like the right solution is to score both the network agent itself and the
underlying entities that make up the agent. These scores can be exposed to the
policy engine, which can choose the correct component(s) to authorize based
on the policy being written.

Presenting so many scores for consideration when writing policy, however,
can make the task of crafting policy more difficult and error prone. In an
ideal world, a single score would be sufficient, but that approach presents
extra availability requirements to the trust engine. A system that tries to
create a single score would likely need to move to an online model, where
the trust engine is interactively queried during the policy decision making.
The engine would be given some context about the request being authorized
so it could choose the best scoring function for that particular request. This
design is clearly more complex to build and operate. Additionally, for policy
where a system administrator specifically wishes to target a particular
component (say, only allow deployments from devices with a score above
X), it seems rather roundabout.

Exposing Scores Considered Risky
While the scores assigned to entities in a zero trust network are not
considered confidential, exposing the scores to end users of the system
should be avoided. Seeing one’s score could be a signal to would-be
attackers that they are increasing or decreasing their trustworthiness in the
system. This desire to withhold information should be balanced against the
frustration provoked by end users’ inability to understand how their actions
are affecting their own trustworthiness in the system. A good compromise
from the fraud industry is to show users their scores infrequently, and to
highlight contributing factors to their score determination.

Data Stores

The data stores used to make authorization decisions are, very simply, the
sources of truth for the current and past states of the system. Information from
these data stores flows through the control plane systems, providing a large
portion of the basis on which authorization decisions are made, as
demonstrated in Figure 4-4.

We previously spoke about the trust engine leveraging these data stores in
order to produce a trust score, which in turn is considered by the policy
engine. In this way, information from control plane data stores has flowed
through the authorization system, finally reaching the policy engine where the
decision was made. These data stores are used by the policy engine, both
directly and indirectly, but they can be useful to other systems that need
authoritative data about the state of the network.

Figure 4-4. Authoritative data stores are used by the policy engine both directly and indirectly
through the trust engine

Zero trust networks tend to have many data stores, organized by function.
There are two primary types: inventory and historical. An inventory is a
single consistent source of truth, recording the current state of the resource(s)
it represents. An example is a user inventory that stores all user information,
or a device inventory that records information about devices known to the
company.

In an inventory, a primary key exists that uniquely represents the tracked
entity. In the case of a user, the likely choice is the username; for a device,
perhaps it’s a serial number. When a zero trust agent undergoes

authentication, it is authenticating its identity against this primary key in the
inventory. Think about it like this: a user authenticates against a given
username. The policy engine gets to know the username, and that the user was
successfully authenticated. The username is then used as the primary key for
lookup against the user inventory. Keeping this flow and purpose in mind
will help you choose the right primary keys, depending on your particular
implementation and authentication choices.

A historical data store is a little bit different. Historical data stores are kept
primarily for risk analysis purposes. They are useful for examining
recent/past behavior and patterns in order to assess risk as it relates to a
particular request or action. Trust engine components are most likely to be
consuming this data, as trust/risk determinations are the engine’s primary
responsibility.

One can imagine many types of historical data stores, and when it comes to
risk analysis, the sky’s the limit. Some common examples include user
accounting records and sFlow1 data. Regardless of the data being stored, it
must be queryable using the primary key from one of the inventory systems.
We will talk about various inventory and historical data stores as we
introduce related concepts throughout this book.

Threat intelligence gathered from both internal and external third-party
sources, such as Open Source Intelligence (OSINT), provides valuable
insights that trust engines can use to determine a trust score. Consider a
scenario in which a user’s credentials were leaked on the dark web as a
result of a recent data breach. In this case, the trust engine can use threat
intelligence to calculate the trust score against the user, which may lead to the
policy engine denying the request or granting it limited access.

Compliance and regulatory standards like the General Data Protection
Regulation (GDPR), Federal Risk and Authorization Management Program
(FedRAMP), etc., have an impact on the policy engine’s decision-making
process when analyzing a request. Organizations typically maintain a
versioned system for maintaining compliance and regulatory requirements
that can be used to create policies, ideally entirely automated, but most likely

requiring final human review before release. The end result is a robust
system in which the policy engine can query the compliance and regulatory
store to determine if a request should be granted or rejected.

Scenario Walkthrough
Before we wrap up this chapter, let’s consider a simple but real-world
scenario that will help you understand the various components discussed in
this and earlier chapters, plus how they interact with one another. Later
chapters will expand on the scenario as we delve deeper into various aspects
of zero trust, such as users, devices, applications, and traffic.

Let’s look at a typical workflow for a user named Bob, who works as a
business manager for Wayne Corporation and is attempting to access a
resource, such as a printer. Figure 4-5 depicts a high-level breakdown of the
zero trust components in this scenario.

Figure 4-5. A logical view of a zero trust security model with control plane, data plane, user, and
resources

First, examine the components in the control plane, as shown in Figure 4-6.
Bob’s personal information, such as his name, IP address, and location, is
stored in the user store. The device data includes details such as the
operating system and whether or not Bob’s devices have received the most
recent security patch. Finally, activity logs record every interaction he has,
including the timestamp (in Unix format), IP address, and location.

The trust engine employs a machine learning model to dynamically calculate
the trust score by looking for anomalous behavior in Bob’s activity logs. Its
primary responsibility is to calculate and communicate the trust score to the
policy engine.

The policy engine, which is at the heart of the control plane, uses trust score
and compliance policies to determine whether Bob’s request should be
granted or denied.

Figure 4-6. To make an authorization decision against an access request, the policy engine
utilizes a trust score as well as compliance rules

We’ll now take a closer look at the policy rules that govern the policy
engine’s behavior. The first two are compliance related, ensuring that the
system always adheres to regulatory and operational business requirements.
The third adds a trust score as a dynamic input to the policy, ensuring that
requests are only granted if the score exceeds a certain threshold. Finally, if
no other policy rule applies, the default behavior is set to deny the
authorization request, ensuring that access must be denied unless a policy
rule explicitly grants it:

1. Compliance

Allow requests only during office hours, Monday through
Friday between 9 a.m. and 5 p.m. Eastern Time Zone (EST).

2. Compliance

Allow requests only from devices that have received the
most recent security update. The goal is to ensure that
devices are patched and less vulnerable to exploits.

3. Trust Score

Allow requests only if the trust score is greater than 7/10. A
higher trust score inspires more confidence in this case, so a
value of 7 is used. Typically, trust score values in policies are
configurable and adjusted over time to ensure a balance; a
low score threshold allows malicious requests to slip
through the cracks, while a high score may negatively
impact genuine access requests.

4. Default

If no other policy rule is applied, this is the catch-all (thus
default) rule that takes effect. This rule is important because
it is recommended to deny by default rather than allow by
default. This is useful because there is no inherent trust in a
zero trust system, so each request is evaluated on its own
merits and is treated as equally malicious.

Next, consider the data plane, which includes enforcement, resources
(printers, file shares, and so on), and the user Bob, who requests access to a
resource (file share in this case). Figure 4-7 depicts the control plane as well
as the data plane.

Figure 4-7. Bob’s request to access the file share is denied after the policy engine evaluates the
request using the trust score and other policy rules

Here’s a step-by-step analysis of Bob’s request:

1. On Monday, at 9.30 a.m. Eastern Time Zone (EST), Bob requests access
to the file share from his laptop. The laptop is fully patched and runs
MacOS.

2. The enforcement component intercepts the request and sends it to the
policy engine for authorization.

3. The policy engine receives the request and consults with the trust engine
to determine the request’s trust score.

4. The trust engine uses a machine learning model to calculate the trust
score based on the activity logs. Anomalies are detected because Bob’s
IP address of 1.2.3.5 and location in Finland are unusual. Moreover,
given that the requests were made from New York and Finland and are
only a few seconds apart, the timestamps between the last two activities
appear impossible for a human to match. The machine learning model
decides that the request should be assigned a trust score of 3, indicating
a low level of trust, and sends the score to the policy engine.

5. The policy engine receives the trust score of 3 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the request is
made during the permissible hours on Monday.

The second rule results in grant (or allow) action because the request is
made using a device that has been fully patched with the most recent
security update.

The third rule results in a deny action because the request received a
trust score of 3, whereas the policy requires a trust score of 7 or higher
to grant access. Because deny action is a final action, the policy engine
does not process any additional rules.

7. The policy engine sends a deny action to the enforcement component. It
also sends additional information about the result, which can aid in
understanding the reason for the denial of the requested action.

8. The enforcement component receives the policy engine’s result and
denies Bob’s request, preventing him from accessing the file share. It

also sends Bob a helpful message about how to improve his chances of
gaining access to the resource if he decides to do so in a future request.

While basic in nature, the scenario walkthrough in this section provides a
functional understanding of various components in the control plane and data
plane working together to deny Bob’s request to access the file share. The
key takeaway is that the system in place does not make authorization
decisions based on ad hoc basics, but rather takes the overall context of the
access request into account when making decisions.

Summary
This chapter focused on the systems that are responsible for making the
ultimate decision of whether a particular request should be authorized in a
zero trust network. This decision is a critical component of such a network,
and therefore should be carefully designed and isolated to ensure it is
trustworthy.

We broke this responsibility down into four key systems: enforcement, policy
engine, trust engine, and data stores. These components are logical areas of
responsibility. While they could be collapsed into fewer physical systems,
the authors prefer an isolated design.

The enforcement system is responsible for ensuring that the policy engine’s
authorization decision takes effect. This system, being in the data path of user
traffic, is best implemented in a manner where the policy decision is
referenced and then enforced. Depending on the architecture chosen, the
policy engine might be notified before a request occurs, or during the
processing of that same request.

The policy engine is the key system that computes the authorization decision
based on data available to it and the policy definitions that have been crafted
by the system administrators. This system should be heavily isolated. The
policy that is defined should ideally be stored separately from the engine and
should use good software development practices to ensure that changes are
understood, reviewed, and not lost as the policy moves from being proposed

to being implemented. Furthermore, since zero trust networks expect to have
much finer-grained policy, mature organizations choose to distribute the
responsibility of defining that policy into the organization with security teams
reviewing the proposed changes.

The trust engine is a new concept in security systems. This engine is
responsible for calculating a trust score of components of the system using
static and inferred algorithms derived from past behavior. The trust score is a
numerical determination of the trustworthiness of a component and allows the
policy writers to focus on the level of trust required to access some resource
instead of the particular details of what actions might reduce that trust.

The final component of this part of the system is the authoritative data
sources that capture current and historical data that can be used to make the
authorization decision. These data stores should focus on being sources of
truth. The policy engine, the trust engine, and perhaps third-party systems can
leverage this data, so the collection of this data will have a decent return on
the investment of capturing it.

The scenario walkthrough demonstrated how various control and data plane
components interact to make the system work. In our scenario, the request
from user Bob to access a file share was evaluated based on the overall
context of the request, which included both a dynamic trust score calculation
and various policies put in place by the business to make a final authorization
decision. This scenario walkthrough will be expanded upon in later chapters.

The next chapter will dig into how devices gain and maintain trust.

1 sFlow, short for “sampled flow,” is an industry standard for packet export at Layer 2 of the OSI
model.

https://oreil.ly/8SRtT

Chapter 5. Trusting Devices

Trusting devices in a zero trust network is extremely critical; it’s also an
exceedingly difficult problem. Devices are the battlegrounds upon which
security is won or lost. Most compromises involve a malicious actor gaining
access to a trusted device; once that access is obtained, the device cannot be
trusted to attest to its own security. This chapter will discuss the many systems
and processes that need to be put in place to have sufficient trust in devices
deployed in the network. We will focus on the role that each of these systems
plays in the larger goal of truly trusting a device. Each technology is
complicated in its own right. While we can’t go into exhaustive detail on each
protocol or system, we will endeavor to give enough details to help you
understand the technology and avoid any potential pitfalls when using it.

We start with learning how devices gain trust in the first place.

Bootstrapping Trust
When a new device arrives, it is typically assigned an equal level of trust as that
of the manufacturer and distributor. For most people, that is a fairly high level of
trust (whether warranted or not). This inherited trust exists purely in meatspace,
though, and it is necessary to “inject” this trust into the device itself.

There are a number of ways to inject (and keep) this trust in hardware. Of
course, the device ecosystem is massive, and the exact approach will differ on a
case-by-case basis, but there are some basic principles that apply across the
board. These principles reduce most differences to implementation details.

The first of those principles has been known for a long time: golden images. No
matter how you receive your devices, you should always load a known good
image on them. Software can be hard to vet; rather than doing it many times
hastily (or not at all), it makes good sense to do it once and certify an image for
distribution.

https://oreil.ly/N6Ul2

Loading a “clean” image onto a device grants it a great deal of trust. You can be
reasonably sure that the software running there is validated by you, and secure.
For this reason, recording the last time a device was imaged is a great way to
determine how much trust it gets on the network.

SECURE BOOT
There are, of course, ways to subvert devices so that they retain the implant across reimaging and other
low-level operations, as the implants in these cases are usually themselves fairly low level.

A secure boot is one way to help fend against these kinds of attacks. It involves loading a public key into
the device’s firmware, which is used to validate driver and OS loader signatures to ensure that nothing
has been slipped in between. While effective, support is limited to certain devices and operating systems.
More on this later.

Being able to certify the software running on a device is only the first step. The
device still needs to be able to identify itself to the resources that it is attempting
to access. This is typically done by generating a unique device certificate that is
signed by your private certificate authority. When communicating with network
resources, the device presents its signed certificate. This certificate proves not
only that it is a known device, but it also provides an identification method.
Using details embedded in the certificate, the device can be matched with data
from the device inventory, which can be used for further decision making.

Generating and Securing Identity
When providing a signed certificate by which a device may be identified, it is
necessary to store the associated private key in a secure manner. This is not an
easy task. Theft of the private key would enable an attacker to masquerade as a
trusted device. This is the worst possible scenario for device authentication.

A simple yet insecure way to do this is to configure access rights to the key in
such a way that only the most privileged user (root or administrator) can access
it. This is the least desirable storage method, as an attacker who gains elevated
access can exfiltrate the unprotected key.

Another way to do this is to encrypt the private key. This is better than relying on
simple permissions, though it presents usability issues because a password (or

other secret material) must be furnished in order to decrypt and use the key. This
may not pose a problem for an end-user device, as the user can be prompted to
enter the password, though this is usually not feasible for server deployments;
human interaction is required for every software restart.

The best way by far to store device keys is through the use of secure
cryptoprocessors. These devices, commonly referred to as hardware security
modules (HSMs) or trusted platform modules (TPMs), provide a secure area in
which cryptographic operations can be performed. They provide a limited API
that can be used to generate asymmetric encryption keys, where the private key
never leaves the security module. Since not even the operating system can
directly access a private key stored by a security module, they are very difficult
to steal.

Identity Security in Static and Dynamic Systems
In relatively static systems, it is common for an operator to be involved when
new hosts are provisioned. This makes the injection story easy—the trusted
human can directly cut the new keys on behalf of the hosts. Of course, as the
infrastructure grows, this overhead will become problematic.

In automating the provisioning and signing process, there is an important
decision to make: should a human be involved when signing new certificates?
The answer to this largely depends on your sensitivity.

A signed device certificate carries quite a bit of power, and serves to identify
anything with the private key as an authentic and trusted device. Just as we go
through measures to protect their theft locally, we must also protect against their
frivolous generation. If your installation is particularly sensitive, you might
choose to involve a human every time a new certificate is signed.

LAWS AND CERTIFICATE AUTHORITIES
Modern browsers widely support certificates issued by well-known, trusted certificate authorities from
many countries, including the United States and many others in the European Union, but this trust is
vulnerable to geopolitical tensions. For example, during the Russo-Ukrainian war in 2022, Russia began
offering its own trusted certificate authority to replace certificates that needed to be renewed by foreign
countries. Without this action, Russian websites would have been unable to renew their certificates
because sanctions prevent many countries’ signing authorities from accepting payments from Russia.
This serves as a stark reminder that, because issuing authorities are bound by the laws of the land, they
can pose their own difficulties.

If provisioning is automated, but still human driven, it makes a lot of sense to
allow the human driving that action to also authorize the associated signing
request. Having a human involved every time is the best way to prevent
unauthorized requests from being approved. Humans are not perfect, though.
They are susceptible to fatigue and other shortcomings. For this reason, it is
recommended that they be responsible for approving only requests that they
themselves have initiated.

It is possible to accomplish provisioning and signature authorization in a single
step through the use of a time-based one-time password (TOTP). The TOTP can
be provided along with the provisioning request and passed through to the
signing service for verification, as shown in Figure 5-1. This simple yet strong
mechanism allows for human control over the signing of new certificates while
imposing only minimal administrative overhead. Since a TOTP can only be used
once, a TOTP verification failure is an important security event.

Figure 5-1. A human providing a TOTP can safely authorize the signature of a certificate

It goes without saying that none of this applies if you want to fully automate the
provisioning of new hosts. Frequently referred to as “auto-scaling,” systems that
can grow and shrink themselves are commonly found in large, highly automated
installations.

Allowing a system to scale itself decreases the amount of care and feeding
required, significantly reducing administrative overhead and cost. Signing a
certificate is an operation that requires a great deal of trust, and just as with
other zero trust components, this trust must be sourced from somewhere. There
are three common choices:

A human

The resource manager

The image or device

The human is an easy and secure choice for relatively static infrastructure or
end-user devices, but is an obvious nonstarter for automated infrastructure. In
this case, you must choose the resource manager or the image...or both.

The resource manager is in a privileged position. It has the ability to both grow
and shrink the infrastructure, and is likely able to influence its availability. It
provides a good analog to a human in a more static system. It is in a position to
assert, “Yes, I turned this new host on, and here is everything I know about it.” It
can use this position to either directly or indirectly authorize the signing of a
new certificate.

To make the job of resource manager easier, many cloud vendors such as
Microsoft, Google, and others provide built-in support for identities that do not
require credentials and can be used to authenticate against specific services in a
well-defined manner. Learn more about Google’s service accounts and
Microsoft’s managed identities.

Depending on your needs, it might be desirable to not grant this ability wholly to
the resource manager. In this case, credentials can be baked into an image. This
is generally not advised as a primary mechanism, as it places too much
responsibility on the image store; and protecting and rotating images can be
fraught with peril. In a similar way, HSMs or TPMs can be leveraged to provide
a device certificate that is tied to the hardware. This is better than baking
material into the image, though requiring a TPM-backed device to sign a new
certificate is still not ideal, especially when considering cloud-based
deployments.

One good way to mitigate these concerns is to require both the resource manager
and a trusted image/device. Generic authentication material baked into the image
(or a registered TPM key) can be used to secure communication with the signing
service and can serve as a component in a multifaceted authorization. The
following are examples of components for authorization consideration:

Registered TPM key or image key

Correct IP address

Valid TOTP (generated by resource manager)

https://oreil.ly/HS7u7
https://oreil.ly/CErb-

Expected certificate properties (i.e., expected common name)

By validating all of these points, the certificate signing service can be relatively
certain that the request is legitimate. The resource manager alone cannot request
a certificate, and since it does not have access to the hosts it provisions, the most
an attacker could do is impact availability. Similarly, a stolen image alone
cannot request a certificate, as it requires the resource manager to validate that it
has provisioned the host and expects the request.

By splitting these responsibilities and requiring multiple systems to assert
validity, we can safely (well, as safely as is possible) remove humans from the
loop.

RESOURCE MANAGERS AND CONTAINERS
Sometimes it all comes down to terminology. In host-centric systems, resource managers create auto-
scaling systems, making decisions about when and where capacity is needed. In containerized
environments, the same decisions are made and executed by a resource scheduler. For the purposes of
zero trust application, these components are practically identical, and the principles apply equally to host-
centric and container-centric environments.

Authenticating Devices with the Control Plane
Now that we know how to store identity in a new device or host, we have to
figure out how to validate that identity over the network. Luckily, there are a
number of open standards and technologies available through which to
accomplish this. Here, we’ll discuss two of those technologies and why they are
so important to device authentication: first we’ll cover X.509 before moving on
to look at TPMs.

These technologies enjoy widespread deployment and support, though this was
not always the case. While we discuss real-world approaches to securing legacy
devices in Chapter 8, we’ll additionally explore here what the future might hold
for zero trust support in legacy hardware.

X.509

X.509 is perhaps the most important standard we have when it comes to device
identity and authentication. It defines the format for public key certificates,
revocation lists, and methods through which to validate certification chains. The
framework it puts forth aids in the formation of identity used for secure device
authentication in nearly every protocol we’ll discuss in this book.

One of the coolest things about X.509 is that the public/private key pairs it uses
to prove identity can also be used to bootstrap encrypted communication. This is
just one of many reasons that X.509 is so valuable for internet security.

Please refer to RFC 5280, RFC 4519, and the ITU-X.509 documentation for
more information on the X.509 certificate format and supported attributes.

Certificate chains and certification authorities
For a certificate to mean anything, it has to be trusted. A certificate can be
created by anyone, so just having one with the right name on it does not mean
much. A trusted party must endorse the validity of the certificate by digitally
signing it. A certificate without a “real” signature is known as a self-signed
certificate and is typically only used for development/testing purposes.

It is the responsibility of the registration authority (a role commonly filled by the
certificate authority) to ensure that the details of the certificate are accurate
before allowing it to be signed. In signing the certificate, a verifiable link is
created from the signed certificate to the parent. If the signed certificate has the
right properties, it can sign further certificates, resulting in a chain. The
certificate authority lies at the root of this chain.

By trusting a certificate authority (CA), you are trusting the validity of all the
certificates signed by it. This is quite a convenience, because it allows us to
distribute only a small number of public keys in advance—the CA public keys,
namely. All certificates furnished from there on can be linked back to the known
trusted CA, and therefore also be trusted. We spoke more about the CA concept
and PKI in general in Chapter 2.

Device identity and X.509
The primary capability of an X.509 certificate is to prove identity. It leverages
two keys instead of one: a public key and a private key. The public key is
distributed, and the private key is held by the owner of the certificate. The

https://oreil.ly/aNnVn
https://oreil.ly/6qBc0
https://oreil.ly/t3NgW

owner can prove they are in the presence of the private key by encrypting a
small piece of data, which can only be decrypted by the public key. This is
known as public key cryptography, or asymmetric cryptography.

The X.509 certificate itself contains a wealth of configurable information. It has
a set of standard fields, along with a relatively healthy ecosystem of extensions,
which allow it to carry metadata that can be used for authorization purposes.
Here is a small sample of typical information found within an X.509 certificate:

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 16210155439472130208 (0xe0f60a7cb39a38a0)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer:C=US, ST=TX, L=Houston, O=Contoso Corp

 Validity

 Not Before: Aug 18 22:54:43 2022 GMT

 Not After : Aug 18 22:54:43 2025 GMT

 Subject: C=US, ST=TX, L=Dallas, O=Contoso Corp,

CN=mgmt011134.contoso.corp

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 Public-Key: (2048 bit)

 Modulus:

 00:af:ff:04:2e:69:96:40:eb:62:20:a8:db:61:06:

 ………………………………

 3f:bd:b1:49:50:26:07:ac:72:c7:9b:81:5d:54:19:

 88:8b

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Key Usage:

 Digital Signature, Key Encipherment

 X509v3 Subject Alternative Name:

 DNS:mgmt011134.contoso.corp,

 DNS:10.69.54.169,

 DNS:fdc0:8a12:793b:adf7:8da6:12cd:e34c:daf6

 X509v3 Extended Key Usage:

 TLS Web Client Authentication,

 TLS Web Server Authentication

 Signature Algorithm: sha256WithRSAEncryption

 1e:e1:ed:8a:40:85:ac:fb:85:78:9c:88:ee:75:30:76:14:79:

 …………

 8d:9f:44:ea

The Issuer field specifies who issued the certificate, and the Subject field
specifies for whom this certificate is intended. Both the Issuer and Subject fields
contain information such as Country (C), State (S), Locality Name (L),
Organization (O), and Common Name (CN), among other fields.

The sample certificate above could be issued to a device and includes the
following information:

Country (C): US. This is the device’s assigned country.

State (S): TX, short for Texas. This is the device’s assigned state.

Locality Name (L): Dallas. This is the device’s assigned city.

Organization (O): Contoso Corp. This is the device’s assigned
organization.

Common Name (CN): This is the device name or unique identifier assigned
to the device.

Additionally, the Subject Alternate Field contains additional information such as
the device’s IPv4 and IPv6 addresses.

Since the certificate is signed and trusted, we can use this information to make
authorization decisions. Leveraging the X.509 fields in this way means that
device access may be authorized without a call to an external service, so long as
the server knows who/what it should be expecting.

DEPRECIATION OF THE ORGANIZATION UNIT
You may have seen the use of the Organization Unit (OU) field in an X.509 certificate. However, in June
2021, the CA/Browser Forum passed ballot SC47 to deprecate the use of the Organization Unit (OU)
field from all public trust TLS/SSL certificates. This change was made because the OU represents a
much smaller unit within an Organization (O), making it difficult for CA to assert its identity consistently.
The proposed change went into effect on September 1, 2022.

Public and private components
As mentioned earlier, X.509 deals with key pairs rather than a single key. While
it is overwhelmingly common that these are RSA key pairs, they don’t

https://oreil.ly/Pkyym

necessarily have to be. X.509 supports many types of key pairs, and we have
recently begun to see the popularization of other key types (such as ECDSA).

Private key storage challenges
X.509 is incredibly useful for device authentication, but it doesn’t solve all the
problems. It still has a private key, and that private key must be protected. If the
private key is compromised, the device’s identity and privacy will be vulnerable
as well. While other zero trust measures help guard against the damage this
might cause (like user/application authentication or authorization risk analysis),
this is considered a worst case scenario and should be avoided at all costs.

Private keys can be encrypted when they are stored, requiring a password to
decrypt. This is a good practice because it would require more than just disk
access to successfully steal, but is only practical for user-facing devices. In the
datacenter, encrypting the private key doesn’t solve the problem because you
still have to store the password, or somehow transmit it to the server, at which
point the password becomes just as cumbersome as the private key itself.

Hardware security modules (HSMs) go a good distance in attempting to protect
the private key. They contain hardware that can generate a public/private key
pair and store the private key in secure memory. It is not possible to read the
private key from the HSM. It is only possible to ask the HSM to do an operation
with it on your behalf. In this way, the private key cannot be stolen, as it is
protected in hardware. We’ll talk more about TPMs, a type of HSM, in the next
section.

X.509 for device authentication
The application of X.509 to device authentication in a zero trust network is
immense. It is a foundational cornerstone in proving device identity for just
about every protocol we have and is instrumental in enabling end-to-end
encryption. Every single device in a zero trust network should have an X.509
certificate.

There is one important consideration to make, however. We are using X.509 to
authenticate a device, yet the heart of the whole scheme—the private key—is
decidedly software based. If the private key is stolen, the whole device
authentication thing is a sham!

These certificates are often used as a proxy for true device authentication
because the keys are so long and unwieldy that you would never write one down
or memorize one. They are something that would be downloaded and installed,
and because of that, they don’t tend to follow users around—they more typically
follow devices. While it might be determined that the risk associated with the
private key problem is acceptable, it still stands as a serious issue, particularly
for zero trust. Fortunately, we can see some paths forward, and by leveraging
TPMs it is possible to inextricably marry a private key to its hardware.

TPMs
A trusted platform module (TPM) is a special chip that is embedded in a
compute device called a cryptoprocessor. These chips are dedicated to
performing cryptographic operations in a trusted and secure way. They include
their own firmware and are often thought of as a computer on a chip.

This design enables a small and lean hardware API that is easily audited and
analyzed for vulnerability. By providing facilities for cryptographic operations,
and excluding interfaces for retrieving private keys, we get the security we need
without ever exposing secret keys to the operating system. Instead, they are
bound to the hardware.

This is a very important property and the reason that TPMs are so important for
device authentication in zero trust networks. Great software frameworks for
identity and authentication (like X.509) do a lot for device authentication. But
without a way to bind the software key to the hardware device it is attempting to
identify, we cannot really call it device identity. TPMs solve this problem,
providing the necessary binding.

Encrypting data using a TPM
TPMs generate and store what is known as a storage root key, or an SRK. This
key pair represents the trust root for the TPM device. Data encrypted using its
public key can be decrypted by the originating TPM only.

The astute reader might question the usefulness of this function in the application
of bulk data encryption. We know asymmetric cryptographic operations to be
very expensive, and thus not suitable for the encryption of relatively large pieces

of data. Thus, in order to leverage the TPM for bulk data encryption, we must
reduce the amount of data that the SRK is responsible for securing.

An easy way to do this is to generate a random encryption key, encrypt the bulk
data using known performant symmetric encryption (i.e., AES, or Advanced
Encryption Standard), and then use the SRK to encrypt the resulting AES key.
This strategy, shown in Figure 5-2, ensures that the encryption key cannot be
recovered, unless in the presence of the TPM that originally protected it.

Figure 5-2. The data is encrypted with an AES key, which in turn is encrypted by the TPM

Most TPM libraries available for open consumption perform these steps for you,
through the use of helper methods. It is recommended to inspect the internal
operation of such methods before using them.

Intermediary keys and passphrases
Next, let’s consider intermediary keys. Many TPM libraries (such as TrouSerS)
create intermediary keys when encrypting data using the TPM. That is, they ask
the TPM to create a new asymmetric key pair, use the public key to encrypt the
AES key, and finally use the SRK to encrypt the private key. When decrypting
the data, you must first decrypt the intermediate private key, use it to decrypt the
AES key, then decrypt the original data.

This implementation seems strange, but there are some relatively sane reasons
for it. One reason is that the additional level of indirection allows for more
flexibility in the distribution of secured data. Both the SRK and intermediate
keys support passphrases, so the use of an intermediary key enables the use of an
additional, perhaps more widely known, passphrase.

This may or may not make sense for your particular deployment. For the
purposes of “this key should only be decryptable on this device only,” it is OK
(and more performant) to bypass the use of an intermediary key, if desired.

The most important application of TPM-backed secure storage is in protecting
the device’s X.509 private key. This secret key serves to authoritatively prove

https://oreil.ly/l-rd7

device identity, and if stolen, so is the identity. Encrypting the private key using
TPM means that while the key might still be taken from disk, it will not be
recoverable without the original hardware.

KEY THEFT IS STILL POSSIBLE
Encrypting the device’s private key and wrapping the key with the SRK does not solve all of the theft
vectors. It protects the key from being directly read from disk, though an attacker with elevated privileges
might still be able to read it from memory or simply ask the TPM to perform the operation for them. The
following “Platform configuration registers” and “Remote attestation” sections provide additional
information on how to further validate hardware identity (beyond X.509 identity).

Platform configuration registers
Platform configuration registers (PCRs) are an important TPM feature. They
provide storage slots into which hashes of running software are stored. It starts
with the hash of the BIOS, then the boot record, its configuration, and so on. This
sequence of hashes can then be used to attest that the system is in an approved
configuration or state. Here is a truncated example of the first few registers
stored in the TPM:

PCR-00: A8 5A 84 B7 38 FC ... # BIOS

PCR-01: 11 40 C1 7D 0D 25 ... # BIOS Configuration

PCR-02: A3 82 9A 64 61 85 ... # Option ROM

PCR-03: B2 A8 3B 0E BF 2F ... # Option ROM Configuration

PCR-04: 78 93 CF 58 0E E1 ... # MBR

PCR-05: 72 A7 A9 6C 96 39 ... # MBR Configuration

This is useful in a number of ways, including in ensuring that only authorized
software configurations are allowed to decrypt data. This can be done by
passing in a set of known good PCR values when using the TPM to encrypt some
data. This is known as “sealing” the data. Sealed data can only be decrypted by
the TPM that sealed it, and only while the PCR values match.

Since PCR values cannot be modified or rolled back, we can use TPM sealing
to ensure that our secret data is not only locked to the device, but also locked to
a specific software configuration and version. This helps to prevent attackers
from using device access to obtain the private key, since only the unmodified and
approved software can unlock it.

Remote attestation
We have learned many ways we can use embedded device security to protect
private keys and other sensitive device-related data. The unfortunate truth is that
so long as a private key is stored outside of a physical TPM, it is still vulnerable
to theft. This fact remains because all it takes to recover the private key is to
convince the TPM to unlock it once. This action discloses the actual private key
—something that is not possible when it is stored on the TPM.

Luckily, the TPM provides a way for us to uniquely identify it. It’s another key
pair called the endorsement key (EK), and each TPM has a unique one. The
private component of an EK only ever exists on the TPM itself, and thus remains
completely inaccessible to the operating system.

Remote attestation is a method by which the TPM generates something called a
“quote,” which is then securely transmitted to a remote party. The quote includes
a list of current PCR values, signed using the EK. A remote party can use this to
assert both host identity (since the EK is unique to the TPM) and software
state/configuration (since PCRs cannot be modified). We’ll talk more about how
the quote can be transmitted in Chapter 8.

WHY NOT JUST TPM?
You may find yourself wondering: why not use the TPM exclusively for
device identity and authentication, and why include X.509 at all?

Currently, TPM access is cumbersome and non-performant. It can provide an
X.509 certificate to confirm its identity, but it is limited in its interaction
with the private key. For instance, the key used for attestation is only
capable of signing data that originates in the TPM. For a protocol like TLS,
this is a deal-breaker.

There have been some attempts to coerce the TPM attestation protocols into
a more flexible form (like the IETF draft, which defines a TLS extension for
device authentication via TPM), though none of them have gained
widespread adoption at the time of this writing.

There are a few open source implementations of remote attestation, including
one in the popular IKE daemon strongSwan. This opens the doors for leveraging

https://oreil.ly/6CQl9

TPM data to not only authenticate an IPsec (Internet Protocol Security)
connection, but also authorize it by using PCR data to validate that the host is
running authentic and unmodified software.

TPMs for Device Authentication
It is clear that TPMs present the best option for strong device authentication in
mature zero trust networks. They provide the linchpin between software identity
and physical hardware. There are, however, a couple of limitations.

Many datacenter workloads are heterogeneous and isolated, like virtual
machines or containers, both of which need to resort to TPM virtualization to
allow the isolated workload to accomplish similar goals. While there are
implementations available (such as vTPM for Xen), trust must still be rooted in
a hardware TPM, and designing a secure TPM-based system that is capable of
live migration is challenging. Additionally, TPM support is still sparse despite
its many uses and strengths. While TPM use would be expected in the context of
device authentication in mature zero trust networks, it should not be considered a
requirement. Adopting TPM support is no small feat, and there are many lower-
hanging fruits in terms of zero trust adoption and migration.

HSM and TPM Attack Vectors
HSM and TPM attack vectors have been in the news lately with the discovery of
new attacks that can be used to bypass the security features of these devices.
These attacks are based on the way HSMs and TPMs are typically implemented;
they each use a shared secret key to encrypt and decrypt data. This shared secret
key is known as the “endorsement key” (EK).

The EK is used to encrypt and decrypt a second key, known as the “storage root
key” (SRK). The SRK is used to encrypt and decrypt the data that is stored on
the HSM or TPM. The problem is that the EK is usually generated by the HSM
or TPM manufacturer and is not kept secret, which means that if an attacker can
obtain the EK, they can use it to decrypt the SRK and then access the data that is
encrypted with the SRK.

Several attacks have been developed that can be used to obtain the EK from an
HSM or TPM:

1. The first attack, known as the “ROCA” attack, was discovered in 2017.
The ROCA attack is a mathematical attack that can be used to calculate the
EK if the attacker has access to a small amount of data encrypted with the
HSM or TPM.

2. The second attack, known as the “Side-Channel” attack, was discovered in
2018. The Side-Channel attack is a physical attack that can be used to
obtain the EK by measuring the electrical characteristics of the HSM or
TPM while encrypting or decrypting data.

3. The third attack, known as the “Fault Injection” attack, was discovered in
2019. The Fault Injection attack is a physical attack that can be used to
introduce faults into the HSM or TPM while it is encrypting or decrypting
data. These faults can then be used to obtain the EK.

These attacks have raised concerns about the security of HSMs and TPMs. In
response to these concerns, several companies have been working on solutions
to protect HSMs and TPMs from these attack vectors.

One solution that has been proposed is “confidential computing.” Confidential
computing is a security technique that can be used to protect data that is stored or
processed on an HSM or TPM. This method uses encryption to protect the data
while it is being stored or processed, which means that even if an attacker
obtains the EK, they will not be able to decrypt the data.

We have also noted another proposed solution in “Bootstrapping Trust” known
as “secure boot.” Secure boot is a security technique that can be used to ensure
that only trusted software can be run on an HSM or TPM. Secure boot uses
cryptographic signatures to verify the software’s identity on the HSM or TPM so
that even if an attacker obtains the EK, they will not be able to run malicious
software on the HSM or TPM.

As attacks against HSMs and TPMs become more sophisticated, it is important
to ensure that your HSMs and TPMs are protected against these attack vectors.
In addition to confidential computing and secure boot technologies, make sure
you:

Keep your HSMs and TPMs up to date with the latest security patches.

Use HSMs and TPMs from reputable vendors.

Use HSMs and TPMs that have been independently audited.

Use physical and logical security measures to protect your HSMs and
TPMs.

Keep your confidential data offline.

Destroy your confidential data when you no longer need it.

Hardware-Based Zero Trust Supplicant?
The most common approach for supporting legacy devices in a zero trust
network is to use an authentication proxy. The authentication proxy terminates
the zero trust relationship and forwards the connection to the legacy host.

While it is possible to enforce policy between the authentication proxy and the
legacy backend, this mode of operation is less than ideal and shares a handful of
attack vectors with traditional perimeter networks. When dealing with legacy
devices, it is desirable to push the zero trust termination point as close to the
device as possible.

When possible, it is preferable to use a dedicated hardware device rather than
an application proxy. This device can act as a zero trust supplicant, carrying a
TPM chip, and plug directly into a legacy device’s Ethernet port. Pairing the two
in your inventory management system can allow for seamless integration
between legacy devices and a zero trust network.

There are many applications that would significantly benefit from such a device.
SCADA (supervisory control and data acquisition) and HVAC (heating,
ventilating, and air conditioning) systems, for instance, come to mind.

Inventory Management
Authenticating a device’s identity and integrity goes a long way in providing
strong zero trust security, but being able to identify a device as belonging to the
organization is only part of the challenge. There are lots of other pieces of
information we need in order to calculate policy and make enforcement
decisions.

Inventory management involves the cataloging of devices and their properties.
Maintaining these records is equally important for both servers and client
devices. It is sometimes more helpful to think of these as network entities rather
than physical devices. While they indeed are commonly physical devices, they
might also be logical entities on the network.

For instance, it is conceivable that a virtual machine or a container could be
considered a “device,” depending on your needs. They have lots of the same
descriptive properties that a real server might have, after all. Lumping all of the
virtual machine traffic from a single host into one policy gets us right back to the
perimeter model. Instead, the zero trust model advocates that the workloads be
tracked in order to drive the network policies they require. This inventory (or
workload) database in this case can be specialized in order to accommodate the
high rates of change that virtualized/containerized environments experience. So,
while the traditional inventory management system and the workload scheduler
might be different systems, they can still work together; for the purposes of this
book, the scheduler service may act as an inventory management system of sorts,
as shown in Figure 5-3.

Figure 5-3. A scheduler and a configuration management database serve as inventory stores for the
control plane

It is not uncommon to have more than one inventory management system. As an
example, many companies have both asset management and configuration
management software. Both of these store device metadata that is useful to us;
they just store different sets, collected in different ways.

CONFIGURATION MANAGEMENT AS AN INVENTORY
DATABASE

Many configuration management (CM) systems, such as Chef or Puppet, offer modes in which data
about the nodes they run on get persisted into a centralized database. Name, IP address, and the “kind”
of server are examples of the type of information typically found in a CM-backed database. Using
configuration management in this way is an easy first step toward developing an inventory database if you
don’t have one already.

Knowing What to Expect
One of the great powers of a zero trust network is that it knows what to expect.
Trusted entities can push expectations into the system, allowing all levels of
access to be denied by default—only expected actions/requests are permitted.

An inventory database is a major component in realizing this capability. A huge
amount of information about what to expect can be generated from this data;
things like which user or application should be running on it, what locations we
might expect it to be in, or even the kind of operating system are all pieces of
information that can be used to set expectations.

In the datacenter, these expectations can be very strong. For instance, when
provisioning a new server, we often know what IP address it will be assigned
and what purpose it will serve. We can use that information to drive network
ACLs (access control lists) and/or host-based firewalls, poking holes for that
specific IP address only where necessary. In this way, we can have all traffic
denied, allowing only the very specific flows we are expecting. The more
properties that can be expected, the better.

This is not such an easy prospect for client-facing systems, however. Clients
operate in new and unexpected ways all the time, and knowing exactly what to
expect from them and when is very difficult. Servers in the datacenter often have
relatively static and long-lived connections to a well-defined set of hosts or
services. By contrast, clients tend to make many short-lived connections to a
variety of services—the timing, frequency, and patterns of which can vary
organically.

To address the wild nature of client-facing systems, we need a slightly different
approach. One way to do this is to simply allow global access to the service and

protect it with mutually authenticated TLS, forcing the client to provide a device
certificate before it can communicate with it. The device certificate can be used
to look the device up in the inventory database and determine whether or not to
authorize it. The advantage is that lots of systems support mutually authenticated
TLS already, and specialized client software is not strictly required. One can
provide reasonably strong security without too badly hindering accessibility or
usability.

A significant drawback to this approach, however, is that the service is globally
reachable. Requiring client certificates is a great way to mitigate this danger.
However, we have seen from vulnerabilities like Heartbleed that the attack
surface of a TLS server is relatively large. Additionally, the existence of the
resources can be discovered by simply scanning for them, since we get to speak
TCP (Transmission Control Protocol) to the resource before we authenticate
with it.

How can we ensure that we don’t engage clients that are not trusted? There has
to be some untrusted communication, after all. What comes before the
authentication?

Secure Introduction
The very first connection from a new device is a precarious one. After all, these
packets must be admitted somewhere, and if they are not strongly authenticated,
then there is a risk. Therefore, the first system that a new device contacts needs a
mechanism by which it can authenticate this initial contact.

This arrangement is commonly known as secure introduction. It is the process
through which a new entity is introduced to an existing one in a way that trust is
transferred to it. There are many ways in which this can be effected; the method
through which an operator passes a TOTP code to a provisioner in order to
authorize a certificate request is a form of secure introduction.

The best (and perhaps only) way to do a secure introduction is by setting an
expectation. Secure introduction practically always involves a trusted third
party. This is a system that is already introduced, and it holds the ability to
introduce new systems. This trusted third party is the system that then

coordinates/validates the specifics of the system to be introduced and sets the
appropriate expectations.

SECURE INTRODUCTION FOR CLIENT SYSTEMS
Secure introduction of client-facing systems can be difficult due to the hard-to-predict nature of wild
clients. When publicly exposing a client-facing endpoint is considered too risky, it is necessary to turn to
more complicated schemes. The currently accepted approach is to use a form of signaling called pre-
authentication, which announces a client’s intentions just prior to taking action. We’ll talk more about pre-
authentication in Chapter 8.

What makes a good, secure introduction system? There are three main criteria to
consider:

Single-use

Credentials and privileges associated with the introduction
should be single-use, preventing an attacker from
compromising and reusing the key.

Short-lived

Credentials and privileges associated with the introduction
should be short-lived, preventing the accumulation of valid but
unused keys.

Third party

Leveraging a third party for introduction allows for separation
of duty, prevents the introduction of poor security practices,
and alleviates operational headaches.

While these requirements might at first seem rigorous, they can be met through
fairly simple means. A great example can be found in the way Chef implements
host introduction. Originally, there was a single secret (deemed the “validation
certificate”) which was qualified to admit any host that possessed it as a new
node. Thus, the introduction would involve copying this secret to the target

machine (or baking it into the image), using it to register the new node, then
deleting it.

This approach is neither single-use nor short-lived. Should the secret be
recovered, it could be used by a malicious actor to steer application traffic to
attacker-controlled hosts, or even trigger a denial of service.

Chef takes a different approach in later versions. Instead of having a static
validation certificate, the provisioning system (via the Chef client utility “knife”)
communicates with the Chef server and creates a new client and associated
client certificate. It then creates the new host and passes in its client certificate.
In this way, an expectation for the new client has been set. While these
credentials are not short-lived, it remains a superior approach.

Renewing and Measuring Device Trust
It is important to accept the fact that no level of security is perfect—not even
yours. Once this fact is acknowledged, we can begin to mitigate its
consequences. The natural progression is that the longer a device is operating,
the greater its chances of being compromised. This is why device age is a
heavily weighted trust signal.

For this reason, rotation is very important. We earlier spoke at length about the
importance of rotation, and devices are no different. Of course, this “rotation” is
manifested in different ways, depending on your definition of “device.” If your
infrastructure is run in a cloud, perhaps a “device” is a host instance. In this
case, rotation is easy: just tear down the instance and build a new one (you are
using configuration management, right?). If you’re running physical hardware,
however, this prospect is a little more difficult.

Reimaging is a good way to logically rotate a device. It is a fairly low-level
operation, and will succeed in removing the majority of persistent threats seen in
the wild today. One can trust a freshly reimaged device more than one that has
been running for a year. While reimaging does not address hardware attacks or
other low-level attacks like those shown in Figure 5-4, it serves as a reasonable
compromise in places where physical rotation is more difficult. Datacenter and
supply chain security partially mitigate this concern.

Figure 5-4. A disk image addresses the portions that house the vast majority of malware, but it’s
certainly not the whole picture

When it comes to managing client devices, the story changes quite a bit.
Reimaging a client device is extraordinarily inconvenient for users. They
customize the device (and its contents) over time in ways that are difficult to
effectively or securely preserve. Oftentimes, when given a new device, they
want to transfer the old image! This is not great news for people trying to secure
client devices.

The solution largely depends on your use case. The trade-off between security
and convenience will be very clear in this area. Everyone agrees that client
devices should be rotated and/or reimaged every so often, but the frequency is

up to you. There is one important relationship to keep in mind: the less often a
device is rotated or reimaged, the more rigorous your endpoint security must be.

Without the relatively strong assurances of device security that we get with
rotation, we must look for other methods to renew trust in a device that has been
operating for a long time. There are two general methods through which this can
be done: local measurement or remote measurement.

Local Measurement
Local measurement can be one of two types: hardware backed or software
backed. Hardware-backed measurement is more secure and reliable, but limited
in capability. Software-backed measurement is much less secure and reliable,
but practically unlimited in its measurement capabilities.

One good option for hardware-backed local measurement is leveraging the TPM
for remote attestation. Remote attestation uses a hardware device to provide a
signed response outlining the hashes of the software currently running on that
machine. The response is highly reliable and very difficult to reproduce.
However, it generally only gives a picture of the low-level software or
specifically targeted software. If an attacker has managed to get an unauthorized
process running in user space, the TPM will not be very useful in its detection;
thus, it has limited capability. See “Remote attestation” for more information.

Software-backed local measurement involves some sort of agent installed on the
endpoint which is used to report health and state measurements. This could be
anything from a managed antivirus client to policy enforcement agents. These
agents go to great lengths in order to attest and prove the validity of the
measurements they report, but even cursory thought quickly reaches the
conclusion that these efforts are generally futile. Software-backed measurements
lack the protection provided by hardware measurements, and an attacker with
sufficient privilege can subvert systems like this.

Remote Measurement
Remote measurement is the best of the two options for one simple reason: it
benefits from separation of duty. A compromised host can report whatever it
wants to, possibly falsifying information in order to conceal the attacker. This is

not possible with remote or passive measurement, since a completely different
system is determining the health of the host in question.

Traditionally, remote measurement is performed as a simple vulnerability scan.
The system in question will be periodically probed by a scanning device, which
observes the response. The response gives some information away, like what
operating system might be running on that device, what services might be active
there, and maybe even what version of those services.

The scan results can be cross-referenced with known bad signatures, like
malicious software or vulnerable versions of legitimate software. Detection of
known bad signatures can then influence the trust of the device appropriately.

There are a number of open source and commercial options available in the
vulnerability scanning arena, including OpenVAS, Nessus, and Metasploit.
These projects are all fairly mature and relied on by many organizations.

Unfortunately, vulnerability scanning comes with the same fundamental problem
as local measurement: it relies on interrogation of the endpoint. It’s the
difference between asking someone if they robbed a bank, and watching them
rob a bank. Sure, sometimes you can get the robber to admit that they did it, but a
professional would never fall for that. Catching them in the act is much more
effective. See “Network Communication Patterns” for more about how to solve
this dilemma.

Unified Endpoint Management (UEM)
Endpoint management is an example of software-based remote management.
UEM systems allow an administrator to manage the security posture of all
devices in an organization from a centralized console and play a critical role in
achieving and maintaining device trust. Microsoft Intune, VMware AirWatch,
MobileIron, ClearPass, and FreeIPA are all examples of endpoint management
systems. While UEM systems were not designed with security as their primary
focus, they have become an essential part of the security ecosystem because they
are often used to enforce security policy on devices. For example, they can
ensure that devices have a minimum level of security before they are allowed to
connect. These systems can also monitor devices for compliance with security

policy, push updates out centrally, and be configured to alert the security team if
the system is no longer managing a device.

Continuous monitoring is a key part of trusting devices. Security teams must
constantly be on the lookout for changes in device behavior that could indicate a
compromise. For example, changes in network traffic patterns might suggest that
a device has been infected with malware and is now communicating with a
malicious server, while changes in file access patterns might indicate that an
unauthorized user is trying to access sensitive data.

Security teams must have visibility into all device changes to properly assess the
risk posed by those changes. However, it is not enough to monitor devices;
security teams also need to be able to take action when a compromise is
detected. UEM systems provide the ability to remotely lock or wipe a device if
it is determined to be compromised, ensuring that its data will remain
confidential even if a device is lost or stolen.

It is also essential to have a process in place for renewing trust in devices that
have been compromised. All too often, organizations wipe away a device that
has been compromised and start over with a new one. While this may be the
safest option, it’s usually not practical or cost-effective. Instead, it’s much better
to have a process for thoroughly cleaning and verifying a device before putting it
back into production.

Device trust is a critical part of zero trust security. By understanding the various
technologies and processes used to achieve device trust, you will be in a much
better position to defend your organization against attacks.

DEVICE COMPLIANCE CHANGE SIGNALS
The OpenID Foundation is currently working on a new standard called the
Shared Signals and Events (SSE) Framework, which aims to standardize the
exchange of status signals about changes in device, user, and machine
identities, as well as application and session status, between cooperating
parties. The OpenID Continuous Access Evaluation Profile, in particular,
provides specific semantics to signal device compliance change in the form
of JSON, as shown in this example:

 "iss": "https://idp.example.com/123456789/",

 "jti": "24c63fb56e5a2d77a6b512616ca9fa24",

 "iat": 1615305159,

 "aud": "https://sp.example.com/caep",

 "events": {

 "https://schemas.openid.net/secevent/caep/event-type/\

 device-compliance-change": {

 "subject": {

 "device": {

 "format": "iss_sub",

 "iss": "https://idp.example.com/123456789/",

 "sub": "e9297990-14d2-42ec-a4a9-4036db86509a"

 },

 "tenant": {

 "format": "opaque",

 "id": "123456789"

 }

 },

 "current_status": "not-compliant",

 "previous_status": "compliant",

 "initiating_entity": "policy",

 "reason_admin": {

 "en": "Location Policy Violation: C076E8A3"

 },

 "reason_user": {

 "en": "Device is no longer in a trusted location."

 },

 "event_timestamp": 1615304991643

 }

 }

}

https://oreil.ly/9yaru
https://oreil.ly/bID0j

Software Configuration Management
Configuration management is the process of tightly controlling and documenting
all software changes. The desired configurations are typically defined as code
or data, and checked into a revision control system, allowing changes to be
audited, rolled back, and so on. There are many commercial and open source
options available, the most popular of which being Chef, Puppet, Ansible, and
CFEngine.

Configuration management software is useful in both datacenter and client
deployments, and simply becomes required beyond a certain scale. Leveraging
such software comes with many security wins, such as the ability to quickly
upgrade packages after vulnerability announcements or to similarly assert that
there are no vulnerable packages in the wild.

Beyond auditing and strict change control, configuration management can also be
used as an agent for dynamic policy configuration. If a node can get a reliable
and trusted view of the world (or part of it, at least), it can use it to calculate
policy and install it locally. This functionality is practically limited to the
datacenter, though, since dynamic, datacenter-hosted systems are decidedly more
static and predictable than client systems. We’ll talk more about this mode of
zero trust operation later on.

The main difference between endpoint management and software configuration
management is that endpoint management is focused on the security of individual
devices, whereas software configuration management is focused on the security
of the software that runs on those devices.

CM-Based Inventory
We have mentioned several times the idea of using a configuration management
database for inventory management purposes. This is a great first step toward a
mature inventory management system and can provide a rich source of
information about the various hosts and software running in your infrastructure.

We like to think that CM-based inventory management is a “freebie” in that
configuration management is typically leveraged for the bevy of other benefits it
brings.

Using it as an inventory database most often comes about out of convenience.
Maintaining this view is important: configuration management systems aren’t
designed to act as inventory management systems...they’re designed to act as
configuration management systems! Using it as such will surely bring a few
rough edges, and you will eventually outgrow it. This is not to say don’t do it. It
is better to actually realize a zero trust network by leveraging as much existing
technology as possible than it is to never get there due to the high barrier to
entry. Once we accept this fact, we can begin to leverage the wealth of data
provided to us by the CM agents.

Searchable Inventory
Some CM systems centrally store the data generated by their agents. Typically,
this data store is searchable, which opens lots of possibilities for young zero
trust networks. For instance, the agent can perform a search to retrieve the IP
address of all web servers in datacenter A and use the results to configure a
host-based firewall. Audits and report generation are greatly enhanced through
searchable inventory as well. This applies not only to datacenter hosts, but also
to clients. By storing the agent data and making it searchable, you can ensure that
you changed the CM code to upgrade that vulnerable package, and that the
package did indeed update where it said it did.

Secure Source of Truth
One important thing to remember when using CM systems in the zero trust
control plane is that the vast majority of the data available to CM systems is
self-reported. This is critical to understand, since a compromised machine could
potentially misrepresent itself. This can lead to complete compromise of the
zero trust network if these facts are not considered during its design.

Thinking back to trust management, the trusted system in this case is the
provisioner. Whether it be a human or some automated system, it is in the best
position to assert the critical aspects of a device, which include the following:

Device type

Role

IP address (in datacenter systems)

Public key

These attributes are considered critical because they are often used in making
authorization or authentication decisions. If an attacker can update the device
role, for instance, perhaps they can coerce the network to expose protected
services. For this reason, restricting write access to these attributes is important.
Of course, you can still use self-reported attributes for making decisions, but
they should not be considered fact under any circumstance. It’s useful to think of
self-reported attributes as hints rather than truth.

Using Device Data for User Authorization
The zero trust model mandates authentication and authorization of both the
device and the user or application. Since device authentication typically comes
before user authentication, it must be done without information gained through
user authentication. This is not the case for user authentication.

When user authentication occurs, device authentication has already succeeded,
and the network has knowledge of the device identity. This position can be
leveraged for all kinds of useful contextual knowledge, enabling us to do much
stronger user authentication than was previously attainable.

One of the more common lookups one might make is to check whether we would
expect this user, given the type of device or place of issue. For instance, you are
unlikely to see an engineer’s credentials being used from a mobile device that
was issued to HR. So while the HR employee can freely access a particular
resource using their own credentials, user authentication attempts using other
credentials might be blocked.

Another good signal is user authentication frequency. If you have not seen a user
log in from one of their devices in over a year, and all of a sudden there is a
request from that device furnishing the user’s credentials—well, I think it’s fair
to be a bit skeptical. Could it have been stolen?

Of course, there is also a good chance that the request is legitimate. In a case
like this, we lower the trust score to indicate that things are a little fishy. The

lower score can then manifest itself in many ways, like still being trusted enough
to read parts of the internal wiki, but not enough to log in to financial systems.

Being able to make decisions like this is a big part of the zero trust architecture
and underscores the importance of a robust inventory management database.
While inventory management is strictly required for device authentication
reasons, the contextual advantage given to user authentication is invaluable.

Trust Signals
This section serves as a reference for various trust signals that are useful in
calculating device trust score and writing policy.

Time Since Image
Over time, the likelihood that a device has been compromised increases
dramatically. Endpoint security practices aim to decrease the risk associated
with long-lived or long-running devices. Still, these practices are far from
perfect.

Imaging a device ensures that the contents of the hard drive match a known good.
While not effective against some lower-level attacks, it provides a reasonably
strong assurance of trust. In the moments immediately following the image
restore, a tremendous amount of trust exists in the device, as only the hardware
or the restore system itself would be able to taint the process. Over time, though,
that trust wears off as the system goes through prolonged exposure.

Historical Access
Device authentication patterns, similar to user authentication patterns, are
important in understanding risk and act as a nice proxy for behavioral filtering.
Devices that have not been seen in a while are more suspicious than ones that
come and go frequently. Maybe suspicious is the wrong word, but it’s certainly
unusual to see one.

The request in question can also be tied to a resource, and it is wise to consider
the device and the resource together in this context. For instance, a months-old
device requesting access to a new resource is more suspicious than a request to

a resource it has been accessing weekly for some time. This stands to say that
the “first few” access attempts to a particular resource will be viewed with
more skepticism than subsequent attempts.

Similarly, frequency can be analyzed to understand if a resource is being
suspiciously overutilized. A request from a device that has made 100 requests in
the last day, but only 104 over the last month, is certainly more suspicious than
one with 0 requests on the last day and 4 in the last month.

Location
While network location, including attributes like geo-location, IP address, etc.,
are typically something we aim to not make strong decisions on with regard to
the zero trust model, they still provide reliable trust signaling in many cases.

One such case might be a sudden location change. Since we are talking about
device authentication, we can set some reasonable expectations about the way
that a device should move around. For instance, a device authentication attempt
from Europe might be pretty suspicious if we have authorized that same device
in the US office just a couple of hours prior.

It should be noted that this is a bit of a slippery slope when it comes to the zero
trust model. Zero trust aims to eliminate positions of advantage within the
network, so using network location to determine access rights can be considered
a little contradictory. The authors recognize this and acknowledge that location-
related data can be valuable while making authorization decisions. That said, it
is important that this consideration not be binary. One should look for patterns in
locations, and never make an absolute decision based solely on location. For
instance, a policy that dictates that an application can only be accessed from the
office is a direct violation of the zero trust model.

Network Communication Patterns
For devices that are connected to networks owned by the operator, there is an
opportunity to measure communication patterns to develop a norm. Sudden
changes from this norm are suspicious and can affect how much the system trusts
such a device. Network instrumentation and flow collection can quickly detect
intrusions by observing them on the network. Making authorization decisions

informed by this detection is very powerful. One example might be shutting
down database access to a particular web server because that web server began
making DNS queries for hosting providers on another continent.

The same applies to client devices. Consider a desktop that has never before
initiated an SSH connection but is now frequently SSHing to internet hosts. It is
fair to say that this change in behavior is suspicious and should result in the
device being less trusted than it was previously.

Machine Learning
Machine learning assists in calculating trust scores by considering the entire
context of the access request, including the user, device, and resource requested,
as well as historical activity to identify anomalous requests. Machine learning
models are typically trained over time to distinguish between anomalous and
legitimate access patterns. As a result, machine learning can assist in reducing
any potential blind spots in identifying malicious requests. However, as with
other aspects of zero trust, relying solely on machine learning is not
recommended; rather, using it in conjunction with other trust signals yields the
best results.

Scenario Walkthrough
We’ll conclude this chapter by expanding on the previous chapter’s scenario
walkthrough and learning about the role of device trust in the evaluation of
Bob’s authorization request.

Let’s start with a close look at the device data store, as shown in Figure 5-5. The
device data contains details specific to the device that you expect, such as the
device model, operating system details, firmware-related information, and, most
importantly, whether the device is in compliance with the organization’s policy
and when the last compliance check was reported. Also, take note of the use of
universally unique identifiers (UUIDs) to uniquely identify the machine and the
use of International Mobile Equipment Identity (IMEI) to uniquely identify a
mobile device.

Figure 5-5. Data about devices, including their software, hardware, and complaint status, is recorded
in a data store

The attribute “InCompliance” may need some explanation because it is critical
in driving device trust. It is used to indicate whether a device adheres to an
organization’s compliance standards, and this is primarily driven by the current
state of device encryption, the installation of the most recent security patch, the
firmware version, and the execution of any other necessary software agents on
the device, including but not limited to anti-malware software, etc.
Organizations typically store device compliance status and the last time it was
checked in the data store as part of device data. Furthermore, devices tend to fall
out of compliance if a compliance check fails or if the device is not available
for compliance checks after a certain period of time, such as 48 hours, but this
duration is typically determined by the organization’s compliance policy.

Following that, we examine activity logs, as shown in Figure 5-6, which depict
activity from two of Bob’s registered devices. By logging device activities, the
trust engine can examine them for anomalous behavior. It is common for

attackers to infect devices first, then use them to perform network scans, and then
target critical resources using the information gathered. The example activity
logs show only a few basic attributes, such as device ID, IP address, and geo-
location, but this can easily be expanded to include a richer set of attributes,
such as application or API being accessed, result of the activity, and so on.

Figure 5-6. Activity logs record device activity and serve as an audit trail, which is useful for
determining anomalous behavior from devices and calculating trust scores

The user store, as shown in Figure 5-7, contains Bob’s user (identity) data,
which includes his name, registered authentication methods, device ID, geo-

location, IP address, and name. One thing to keep in mind is that certain user
attributes change less frequently than others. For example, usernames tend to stay
the same for the most part, whereas device IDs may change every few years as
part of a typical organization’s device refresh or in the case of Bring Your Own
Device (BYOD), where the user leverages a noncorporation-issued device.
There is always room for adding more user attributes, as well as challenges with
maintaining user data, which we will discuss in Chapter 7 as part of the user
trust discussion. Although the scenario focuses primarily on user identities, the
points discussed also apply to machine identities.

Figure 5-7. Bob’s user identity data includes his name, registered authentication methods, device ID,
geo-location, and IP address

The trust engine, as shown in Figure 5-8, evaluates and assigns a trust score to
access requests from Bob using both dynamic and static rules. It actively uses
data from various entities within the data store and deploys machine learning to

ensure that any blind spots are identified, as well as using static rules for
specific conditions. In this case, the trust score is calculated dynamically using
machine learning to detect anomalous behavior using activity logs, which store
historical user and device activity logs. The machine learning model classifies
the request as highly anomalous, with a trust score of 1 or 2; moderately
anomalous, with a trust score of 3 or 4; or low anomalous, with a trust score of 5
or 6.

The trust engine also takes into account the user’s authentication method,
specifically whether or not MFA is used to verify their identity. Requests with
only a single factor receive a low trust score of 3, whereas requests with MFA
receive a high trust score of 5. The final trust score is calculated by averaging
all of the scores assigned to a request. Please keep in mind that how a trust score
is calculated in real-world zero trust implementations is heavily dependent on
the software calculating the score, but every request must receive a final trust
score that the policy engine can use for decision making.

Figure 5-8. The trust engine evaluates and assigns a trust score to an access request using both
dynamic and static rules

Finally, as illustrated in Figure 5-9, we have a policy engine that defines rules
based on the overall context of the authorization request, which includes the
user, application, device, regulatory requirements, and trust score. The policy
engine also takes the “deny all” approach. Essentially, unless the request is
explicitly permitted by one of the rules, it will be denied access to the resource.

Figure 5-9. The policy engine is ultimately responsible for granting or denying access requests

Let’s go through a few use cases.

Use Case: Bob Wants to Send a Document for Printing
Here is what we know about Bob’s request:

Bob is requesting access to send a document to an organization’s printer.

Bob is using his laptop with the device ID “ABC.”

Bob has used MFA and also used a password as the first factor for
authentication.

Bob is making the request during office hours.

Request Analysis
1. Bob’s access request (action: print document, device-id: ABC,

authentication: pwd/mfa, location: New York, IP: 1.2.3.4, datetime: 24-
july-2022-10:00am-est-timezone) reaches the enforcement component.

2. The enforcement component forwards the access request to the policy
engine for approval.

3. The policy engine receives the request and consults with the trust engine to
determine the request’s trust score.

4. The trust engine evaluates the request:

It finds no anomalies because the device access request pattern, as
well as the IP address and location, appear to be consistent with
historical data. It gives a high trust score of 6.

Bob has also completed MFA, so a trust score of 5 is assigned.

The device is in compliance and had its most recent compliance check
less than 36 hours ago.

Finally, the trust engine computes the average of the trust scores,
which is 5.5, and returns it to the policy engine.

5. The policy engine receives the trust score of 5.5 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the request
is made during the permissible office hours.

The second rule results in a grant (or allow access to printer) action
because the request has a trust score greater than 3.

Rules 3 and 4 do not apply to the current access request because it is
specifically for a printer.

The fifth rule does not apply to the current request as the trust score is
greater than 3.

The sixth rule does not apply to the current request as the request is
not for the help desk.

The seventh rule, which is also a default rule, will not be applicable.
This rule is only executed when no other rules are executed.

The policy engine stops processing and makes the final decision to
allow printer access.

7. The policy engine sends an allow action to the enforcement component.

8. The enforcement component receives the policy engine’s result and allows
Bob’s request to print the document.

Use Case: Bob Wants to Delete an Email
Here is what we know about Bob’s request:

Bob wants to delete an email from his inbox.

Bob is using his mobile phone with the device ID “XYZ.”

Bob has used MFA and also used his password as the first factor for
authentication.

Bob is making the request during office hours.

Request Analysis
1. Bob’s access request (action: delete email, device-id: XYZ, authentication:

pwd/mfa, location: Dallas, IP: 6.7.8.9, datetime: 24-july-2022-9:45am-est-
timezone) reaches the enforcement component.

2. The enforcement component forwards the access request to the policy
engine for approval.

3. The policy engine receives the request and consults with the trust engine to
determine the request’s trust score.

4. The trust engine evaluates the request:

It finds no anomalies because the device access request pattern, as
well as the IP address and location, appear to be consistent with
historical data. It gives a high trust score of 6.

Bob has also completed MFA, so a trust score of 5 is assigned.

The device is in compliance, but its most recent compliance check
was performed more than 36 hours ago, so a trust score of 4 is
assigned.

Finally, the trust engine computes the average of trust scores, which is
5, and returns it to the policy engine.

5. The policy engine receives the trust score of 5 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the request
is made during the permissible office hours.

The second rule does not apply to the current access request since the
request is not for the printer.

The third rule does not apply to the current access request because the
trust score is lower than 7.

The fourth rule does apply to the current access request, as the trust
score is less than 7, which restricts email access to read-only (no
deletion or sending of email is allowed).

The fifth rule does not apply to the current request as the trust score is
greater than 3.

The sixth rule does not apply to the current request as the request is
not for the help desk.

The seventh rule, which is also a default rule, will not be applicable.
This rule is only executed when no other rules are executed.

The policy engine stops processing and makes the final decision to
only allow Bob read-only access to the email inbox, with no delete
permissions.

7. The policy engine’s decision is received by the enforcement component,
which grants Bob read-only access to his email inbox but denies him the
ability to delete emails. This is a good way to ensure that user Bob’s ability
to be productive is not completely hampered, but privileged tasks such as
email deletion are limited.

Summary
This chapter focused on how a system can trust a device. This is a surprisingly
hard problem, so a lot of different technologies and practices need to be applied

to ensure that trust in a device is warranted.

We started with looking at how trust is injected into a device from human
operators. For relatively static systems, we can have a person involved in
providing the critical credentials, but for dynamic infrastructure, that process
needs to be delegated. Those credentials are incredibly valuable, and we
discussed how to safely manage them.

Devices eventually need to participate in the network, and understanding how
they authenticate themselves is important. We covered several technologies, such
as X.509 and TPMs, which can be used to authenticate a device on the network.
Using these technologies along with databases of expected inventory can go a
long way toward providing the checks and balances that give devices
trustworthiness.

Trust is fleeting and degrades over time, so we talked about the mechanisms for
renewing trust. Additionally, we discussed the many signals that can be
continually used to gauge the trustworthiness of a device over time and the
mechanisms used to manage devices. Perhaps the most important lesson is that a
device starts out in a trusted state and only gets worse from there. The rate at
which its trust declines is what we’d like to keep a handle on.

The scenario walkthrough revisits Bob from the previous chapter, but this time
the focus is on device trust and how the policy engine, along with other
components such as the trust engine and data store, handle various use cases.

The next chapter looks at how we can establish trust in the users of the system.

Chapter 6. Trusting Identities

It’s tempting to conflate user trust with device trust. Security-conscious
organizations might deploy X.509 certificates to users’ devices to gain
stronger credentials than passwords provide. One could say that the device
certificate strongly identifies the user, but does it? How do we know that the
intended user is actually at the keyboard? Perhaps they left their device
unlocked and unattended?

Conflating user identity with device identity also runs into problems when
users have multiple devices, which is increasingly becoming the norm.
Credentials need to be copied between several devices, putting them at
increased risk of exposure. Devices might need different credentials based
on their capabilities. In networks that have kiosks, this problem becomes
even more difficult.

Zero trust networks identify and trust users separately from devices.
Sometimes identification of a user will use the same technology that is used
to identify devices, but we must be clear that these are two separate
credentials.

This chapter will explore what it means to identify a user and store their
identity. We will discuss when and how to authenticate users. User trust is
often stronger when multiple people are involved, so we will discuss how to
create group trust and how to build a culture of security.

Identity Authority
Every user has an identity, which represents how they are known in a larger
community. In the case of a networked system, the identity of a user is how
they are recognized in that system.

Given the large number of individuals in the world, identifying a user can be
a surprisingly hard problem. Let’s explore two types of identity:

Informal identity

Authoritative identity

Informal identity is how groups self-assemble identity. Consider a real-
world situation where you meet someone. Based on how they look and act,
you can build up an identity for that person. When you meet them later, you
can reasonably assume that they are the same person based on these physical
characteristics. You might even be able to identify them remotely—for
example, by hearing their voice.

Informal identity is used in computer systems. Pseudonymous accounts—
accounts that are not associated with one’s real-world name—are common in
online communities. While the actual identity of an individual is not
necessarily known in these communities, through repeated interactions, an
informal identity is created.

Informal identity works in small groups, where trust between individuals is
high and the risks are relatively low. This type of identity has clear
weaknesses when the stakes are higher:

One can manufacture a fictitious identity.

One can claim the identity of another person.

One can create several identities.

Multiple individuals can share a single identity.

When a stronger form of identity is required, an authority needs to create
authoritative identity credentials for individuals. In the real world, this
authority often falls to governments. Government-issued IDs (e.g., a driver’s
license or passport) are distributed to individuals to represent their identity
to others. For low-risk situations, these IDs alone are sufficient proof of
one’s identity. However, for higher-risk situations, cross-checking the
credentials against the government database provides a better guarantee.

Computer systems often need a centralized authority for user identity as well.
Like in the real world, users are granted credentials (of varying strength) that

identify them in the system. Based on the degree of risk, cross-checking the
credentials against a centralized database may be desired. We will discuss
how these systems should function later.

Credentials can be lost or stolen, so it is important that an identity authority
have mechanisms for individuals to regain control of their identity. In the
case of government-issued identification, a person often needs to present
other identifying information (e.g., a birth certificate or fingerprint) to a
government authority to have their ID reissued. Computer systems similarly
need mechanisms for a user to regain control of their identity in the case of
lost or stolen credentials. These systems often require presenting another
form of verification, say a recovery code or alternative authentication
credential. The choice of required material to reassert one’s identity can
have security implications, which we will discuss later.

Bootstrapping Identity in a Private System
Storing and authenticating user identity is one thing, but how do you generate
the identity to begin with? Humans interacting with computer systems need a
way to digitally represent their identity, and we seek to bind that digital
representation as tightly to the real-world human as possible.

The genesis of a digital identity, and its initial pairing to a human, is a very
sensitive operation. Controls to authenticate the human outside of your digital
system must be strong in order to prevent an attacker from masquerading as a
new employee, for instance. Similar controls might also be exercised for
account recovery procedures where the user is unable to provide their
current credentials.

ATTACKING IDENTITY RECOVERY SYSTEMS
Users occasionally misplace or forget authentication material such as passwords or smart cards. To
recover the factor (i.e., reset the password), the user must be authenticated by alternative and
sometimes untraditional means. Attacks on such systems are frequent and successful. For example,
in 2012, a popular journalist’s Amazon account was broken into, and the attacker was able to recover
the last four digits of the most recent credit card used. With this information, the attacker called
Apple support and “proved” their identity using the recovered number. Be sure to carefully evaluate
such reset processes—“secret” information is often less secret than it appears.

Given the sensitivity of this operation, it is important to put good thought and
strong policy around how it is managed. It is essentially a secure introduction
for humans, and the good news is, we know how to do that pretty well!

Government-Issued Identification
It probably comes as no surprise that one of the primary recommendations for
accomplishing human authentication is through the use of government-issued
identification. After all, human authentication is precisely what they were
designed for in the first place!

In some implementations, it may even be desirable to request multiple forms
of ID, raising the bar for potential forgers/imposters. It goes without saying
that staff must be properly trained in validating these IDs, lest the controls be
easily circumvented.

Nothing Beats Meatspace
Despite our best efforts, human-based authentication schemes remain
stronger than their digital counterparts. It’s always a good idea to bootstrap a
human’s new digital identity in person. Email or other “blind” introductions
are heavily discouraged. For instance, shipping a device configured to trust
the user on first use (sometimes referred to as TOFU) is not uncommon.
However, this method suffers from physical weakness since the package is
vulnerable to interception or redirection.

Oftentimes, the creation of the digital identity is preceded by a lengthy human
process, such as a series of interviews or the completion of a business
contract. The result is that the individual has been previously exposed to
already-trusted individuals who have learned some of their qualities along
the way. This knowledge can be leveraged for further human-based
authentication, as shown in Figure 6-1.

Figure 6-1. A trusted administrator relies on a trusted employee and a valid ID to add a new user
to an inventory system

For instance, a hiring manager is in a good position to escort a new hire to
the help desk for human authentication, since the hiring manager is
presumably already familiar with the individual and can attest to their
identity. While this would be a strong signal of trust, just like anything else in
a zero trust network, it should not be the only method of authentication.

Expectations and Stars
There are usually many pieces of information available prior to
bootstrapping a digital identity. It is desirable to use as many pieces of
information as is reasonable to assert that all of the stars line up as expected.
These expectations are similar to ones set in a typical zero trust network;

they are simply accrued and enforced by humans. These expectations can
range from the language(s) they speak to the home address printed on their
ID, with many other creative examples in between. A thorough company may
choose to even use information learned through a background check to set
real-world expectations. Humans use methods like this every day to
authenticate each other (both casually and officially), and as a result, these
methods are mature and reliable.

Storing Identity
Since we need to bridge identity from the physical world to the virtual
world, identity must be transformed into bits. These bits are highly sensitive
and oftentimes need to be stored permanently. Therefore, we will discuss
how to store this data to ensure its safety.

User Directories
To trust users, systems typically need centralized records of those users.
One’s presence in such a directory is the basis by which all future
authentication will occur. Having all this highly sensitive data stored
centrally is a challenge that, unfortunately, cannot be avoided.

A zero trust network makes use of rich user data to make better authentication
decisions. Directories will store traditional information like usernames,
phone numbers, and organization role, and also extended information like
expected user location or the public key of an X.509 certificate they have
been issued.

Given the sensitive nature of the data being stored on users, it’s best to not
store all information together in a single database. Information about users
isn’t typically considered secret, but becomes sensitive when such data is
used to make authorization decisions. Additionally, having broad knowledge
of all users in a system can be a privacy risk. For example, a system that
stores the last known location of all users could be used to spy on users.
Stored user data can also be a security risk, if that data can be leveraged to

attack another system. Consider systems that ask users fact-based information
as a means to further validate their identity.

Instead of storing all user information in a single database, consider splitting
the data into several isolated databases. These databases should ideally only
be exposed via a constrained API, which limits the information divulged. In
the best case, raw data is never divulged, but rather assertions can be made
about a user by the application that has access to the data. For example, a
system that stores a user’s previous known location could expose the
following APIs:

Is the user currently or likely to be near these coordinates?

How frequently does the user change locations?

Directory Maintenance
Keeping user directories accurate is critical for the safety of a zero trust
network. Users are expected to come and go over the lifetime of a network
system, so good onboarding and offboarding procedures should be created to
keep the system accurate. As much as possible, it’s best to integrate technical
identity systems (LDAP—Lightweight Directory Access Protocol—or local
user accounts) into organizational systems. For example, a company might
have human resource systems to track employees that are joining or leaving
the company. It is expected that these two sources of data are consistent with
each other, but unless there is a system that has integrated the two or is
checking their contents, the sets of data will quickly diverge. Creating
automated processes for connecting these systems is an effort that will
quickly pay dividends.

The case of two divergent identity systems raises an important point—which
system is authoritative? Clearly one system must be the system of record for
identity, but that choice should be made based on the needs of the
organization. It doesn’t much matter which system is chosen, only that one is
authoritative and all other identity systems derive their data from the system
of record.

MINIMIZING DATA STORED CAN BE HELPFUL
A system of record for identity does not need to contain all identity information. Based on our earlier
discussion, it can be better to purposefully segment user data. The system of record needs to only
store the information that is critical for identifying an individual. This could be as simple as storing a
username and some personal information for the user to recover their identity should they forget it.
Derivative systems can use this authoritative ID to store additional user information.

When to Authenticate Identity
Even though authentication is mandatory in a zero trust network, it can be
applied in clever ways to significantly bolster security while at the same
time working to minimize user inconvenience.

While it might be tempting (and even logical) to adopt a position of “It’s not
supposed to be easy; it’s supposed to be secure,” user convenience is among
one of the most important factors in designing a zero trust network. Security
technologies that present a poor user experience are often systematically
weakened and undermined by their own users. A poor experience will be a
disincentive for the user from engaging with the technology, and shortcuts to
sidestep enforcement will be taken more often.

Authenticating for Trust
The act of authenticating a user is, essentially, the system seeking to validate
that the user is indeed who they say they are. As you’ll learn in the next
section, different authentication methods have different levels of strength, and
some are strongest when combined with others. Due to the fact that these
authentication mechanisms are never absolute, we can assign some level of
trust to the outcome of the operation.

For instance, you may need only a password to log in to a subscription music
service, but your investment account probably requires a password and an
additional code. This is because investing is a sensitive operation: the
system must trust that the user is authentic. The music service, on the other

hand, is not as sensitive and chooses to not require an additional code,
because doing so would be a nuisance.

By extension, a user may pass additional forms of authentication in order to
raise their level of trust. This can be done specifically in a time of need. A
user whose trust score has eroded below the requirements for a particular
request can be asked for additional proof, which if passed will raise the trust
to acceptable levels.

This is far from a foreign concept; it can be seen in common use today.
Requiring users to enter their password again before performing a sensitive
operation is a prime example of this concept in action. It should be noted,
however, that the amount of trust one can gain through authentication
mechanisms alone should not be unbound. Without it, consequences of poor
device security and other undesirable signals can be washed out.

Trust as the Authentication Driver
Since authentication derives trust, and it is our primary goal to not
frivolously drag users through challenges, it makes sense to use the trust
score as the mechanism that mandates authentication requirements. This
means that a user should not be asked to further authenticate if their trust
score is sufficiently high and, conversely, that a user should be asked to
authenticate when their score is too low. This is to say that, rather than
selecting particular actions that require additional authentication, one should
assign a required score and allow the trust score itself to drive the
authentication flow and requirements. This gives the system the opportunity
to choose a combination of methods in order to meet the goal, possibly
reducing the invasiveness by having context about the level of sensitivity and
knowledge of how much each method is trusted.

This approach is fundamentally different from traditional authentication
design approaches, which seek to designate the most sensitive areas and
actions, and authenticate them the heaviest, perhaps despite previous
authentication and trust accumulation. In some ways, the traditional approach
can be likened to perimeter security, in which sensitive actions must pass a

particular test, after which no further protections are present. Instead,
leveraging the trust score to drive these decisions removes arbitrary
authentication requirements and installs adaptive authentication and
authorization that is only encountered when necessary.

The Use of Multiple Channels
When authenticating and authorizing a request, using multiple channels to
reach the requestor can be very effective. One-time codes provide an
additional factor, especially when the code-generating system is on a
separate device. Push notifications provide a similar capability by using an
active connection to a mobile device. There are many applications of this
idea, and they can take different forms.

Depending on the use case, one might choose to leverage multiple channels
as an integral part of a digital authentication scheme. Alternatively, those
channels might be used purely as an authorization component, where a
requestor might be prompted to approve a risky operation. Both uses are
effective in their own right, though user experience should (as always) be
kept in mind when deciding when and where to apply them.

CHANNEL SECURITY
Communication channels are constructed with varying degrees of authentication and trust. When
leveraging multiple channels, it is important to understand how much trust should be placed on the
channel itself. This will dictate which channels are selected for use and when. For instance, physical
rotating code devices are only as secure as the system used to distribute them or the identification
check required to physically obtain one from your administrator. Similarly, a prompt via a corporate
chat system is only as strong as the credentials required to sign in to it. Be sure to use a different
channel than the one you are trying to authenticate/authorize in the first place.

Leveraging multiple channels is effective not because compromising a
channel is hard, but because compromising many is hard. We will talk more
about these points in the next section.

Caching Identity and Trust

Session caching is a relatively mature technology that is well documented, so
we won’t spend too much time talking about it, but it is important to highlight
some design choices that are important for secure operation in a zero trust
network. Frequent validation of the client’s authorization is critical. This is
one of the only mechanisms allowing the control plane to effect changes in
data plane applications as a result of changes in trust. The more frequently
this can be done, the better. Some implementations authorize every request
with the control plane. While this is ideal, it may not be a realistic prospect,
depending on your situation.

Many applications validate SSO tokens only at the beginning of a session and
set their own tokens after that. This mode of operation removes session
control from the control plane and is generally undesirable. Authorizing
requests with control plane tokens rather than application tokens allows us to
easily revoke when trust levels fluctuate or erode.

How to Authenticate Identity
Now that we know when to authenticate, let’s dig into how to authenticate a
user. The common wisdom, which is also applicable in zero trust networks,
is that there are four ways to identify a user:

Something they know

Knowledge the user alone has (e.g., a password, a personal
identification number (PIN)).

Something they have

A physical credential that the user can provide (e.g., a
hardware token, key fob, smart card, USB key, or access
badge).

Something they are

An inherent/biometric characteristic that uniquely identifies
the user (e.g., a fingerprint, iris scan, voiceprint, or facial

recognition).

Behavioral patterns

The use of machine learning to analyze unique behavioral
patterns to verify the user’s identity (e.g., how they hold
their device or how they type).

We can authenticate a user using one or more of these methods. Which
method or methods chosen will depend on the level of trust required. For
high-risk operations, which request multiple authentication factors, it’s best
to choose methods that are not in the same grouping of something you know,
something you have, or something you are. This is because the attack vectors
are generally similar within a particular grouping. For example, a hardware
token (something you have) can be stolen and subsequently used by anyone. If
we pair that token with a second token, it’s highly likely that both devices
will be near each other and stolen together.

Which factors to use together will vary based on the device that the user is
using. For example, on a desktop computer, a password (something you
know) and a hardware token (something you have) is a strong combination
that should generally be preferred. For a mobile device, however, a
fingerprint (something you are) and passphrase (something you know) might
be preferred.

PHYSICAL SAFETY IS A REQUIREMENT FOR TRUSTING
USERS

This section focuses on technological means to authenticate the identity of a user, but it’s important to
recognize that users can be coerced to thwart those mechanisms. A user can be threatened with
physical harm to force them to divulge their credentials or to grant someone access under a trusted
account. Behavioral analysis and historical trending can help to mitigate such attempts, though they
remain an effective attack vector.

Something You Know: Passwords

Passwords are the most common form of authentication used in computer
systems today. While often maligned due to users’ tendency to choose poor
passwords, this authentication mechanism provides one very valuable
benefit: when done well, it is an effective method for asserting that a user’s
mind is present.

A good password has the following characteristics:

It’s long

A recent NIST password standard states a minimum of 8
characters, but 20+ character passwords are common among
security-conscious individuals. Passphrases are often
encouraged to help users remember a longer password.

It is difficult to guess

Users tend to overestimate their ability to pick truly random
passwords, so generating passwords from random number
generators can be a good mechanism for choosing a strong
password, though convenience is affected if it cannot be
easily committed to memory.

It is not reused

Passwords need to be validated against some stored data in a
service. When passwords are reused, the confidentiality of
that password is only as strong as the weakest storage in use.

Choosing long, difficult-to-guess passwords for every service or application
a user interacts with is a high bar for users to meet. As a result, users are
well served to make use of a password manager to store their passwords.
Using this tool will allow users to pick much harder-to-guess passwords and
thereby limit the damage of a data breach.

When building a service that authenticates passwords, it’s important to
follow best practices. Passwords should never be directly stored or logged.
Instead, a cryptographic hash of the password should be stored. The cost to

brute force a password (usually expressed in time and/or memory
requirements) is determined by the strength of the hashing algorithm. NIST
periodically releases standards documents that include recommended
password procedures. As computers become more powerful, the current
recommendations change, so it’s best to consult industry best practices when
choosing algorithms.

Something You Have: TOTP
The time-based one-time password, or TOTP, is an authentication standard
wherein a constantly changing code is provided by the user. RFC 6238
defines the standard implemented in hardware devices and software
applications. Mobile applications are often used to generate the code, which
works well, since users tend to have their phones close by.

Whether using an application or hardware device, a TOTP requires sharing a
random secret value between the user and the service. This secret and the
current time are passed through a cryptographic hash and then truncated to
produce the code to be entered. As long as the device and the server roughly
agree on the current time, a matching code confirms that the user is in
possession of the shared key.The storage of the shared key is critical, both on
the device and on the authenticating server. Losing control of that secret will
permanently break this authentication mechanism. The RFC recommends
encrypting the key using a hardware device like a TPM, and then limiting
access to the encrypted data.

Exposing the shared key to a mobile device places it in greater danger than if
it is on a server. The device could connect to a malicious endpoint that might
be able to extract the key. To mitigate this vector, an alternative to a TOTP is
to send to the user’s mobile phone a random code over an encrypted channel.
This code is then entered on another device to authenticate that the user is in
possession of their mobile phone.

https://oreil.ly/clc4T
https://oreil.ly/3wwSQ

SMS IS NOT A SECURE COMMUNICATION CHANNEL
Sending the user a random code for authentication requires that the authentication code is reliably
delivered to the intended device and is not exposed during transit. Systems have previously sent
random codes as SMS messages, but the SMS system does not make sufficient guarantees to
protect the random code in transit. Using SMS for this system is therefore not recommended.

Something You Have: Certificates
Another method to authenticate users is to generate per-user X.509
certificates. The certificate is derived from a strong private key and then
signed using the private key of the organization that provided the certificate.
The certificate cannot be modified without invalidating the organization’s
signature, so the certificate can be used as a credential with any service that
is configured to trust the signature of the organization.

Since an X.509 certificate is meant for consumption by a computer, not by
humans, it can provide much richer details when presented to a service for
authentication. As an example, a system could encode metadata about the
user in the certificate and then trust that data since it has been signed by a
trusted organization. This can alleviate the need to create a trusted user
directory in less mature networks.

Using certificates to identify users relies heavily on those certificates being
securely stored. It is strongly preferred to both generate and store the private
key component on dedicated hardware so as to prevent digital theft. We’ll
talk more about that in the next section.

Something You Have: Security Tokens
Security tokens are hardware devices that are used primarily for user
authentication, but they have additional applications. These devices are not
mass storage devices storing a credential that was provisioned elsewhere.
Instead, the hardware itself generates a private key. This credential
information never leaves the token. The user’s device interacts with the

hardware’s APIs to perform cryptographic operations on behalf of the user,
proving that they are in possession of the hardware.

As the security industry progresses, organizations are increasingly turning
toward hardware mechanisms for authenticating user identity. Devices like
smart cards or Yubikeys can provide a 1:1 assertion of a particular identity.
By tying identity to hardware, the risk that a particular user’s credentials can
be duplicated and stolen without their knowledge is greatly mitigated, as
physical theft would be required.

Storing a private key in hardware is by far the most secure storage method
we have today. The stored private key can then be used as the backing for
many different types of authentication schemes. Traditionally, they are used in
conjunction with X.509, but a new protocol called Universal 2nd Factor
(U2F) is gaining rapid adoption. U2F provides an alternative to full-blown
PKI, offering a lightweight challenge-response protocol that is designed for
use by web services. Regardless of which authentication scheme you choose,
if it relies on asymmetric cryptography, you should probably be using a
security token.

While these hardware tokens can provide strong protection against credential
theft, they cannot guarantee that the token itself isn’t stolen or misused.
Therefore, it’s important to recognize that while these tokens are great tools
in building a secure system, they cannot be a complete replacement for a user
asserting their identity. If we want the strongest guarantee that a particular
user is who they claim to be, using a security key with additional
authentication factors (e.g., a password or biometric sensor) is still strongly
recommended.

Something You Are: Biometrics
Asserting identity by recognizing physical characteristics of the user is called
biometrics. Biometrics is becoming more common as advanced sensors are
making their way into devices we use every day. This authentication system
offers better convenience and potentially a more secure system if biometric
signals, such as the following, are used wisely:

Fingerprints

Handprints

Retina scans

Voice analysis

Face recognition

Using biometrics might seem like the ideal authentication method. After all,
authenticating a user is validating that they are who they say they are. What
could be better than measuring physical characteristics of a user? While
biometrics is a useful addition to system security, there are some downsides
that should not be forgotten.

Authenticating via biometrics relies on accurate measurement of a physical
characteristic. If an attacker is able to trick the scanner, they are able to gain
entry. Fingerprints, being a common biometric, are left on everything a
person touches. Attacks against fingerprint readers have been demonstrated
—attackers obtain pictures of a latent fingerprint and then 3D print a fake
one, which the scanner accepts. Additionally, biometric credentials cannot be
rotated, since they’re a physical characteristic. They can also present an
accessibility issue if, for example, an individual is born without fingerprints
(a condition known as adermatoglyphia) or if they lost their fingers in an
accident.

Finally, biometrics can present surprising legal challenges when compared
against other authentication mechanisms. In the United States, for example, a
citizen can be compelled by a court to provide their fingerprint to
authenticate to a device, but they cannot be compelled to divulge their
password, owing to their Fifth Amendment right against self-incrimination.

Behavioral Patterns
Behavioral authentication is a method of identity verification that uses
machine learning to analyze a person’s unique behavioral patterns (such as
how they type, how they hold their device, etc.) and identify individual

characteristics that can then be used to verify their identity. It is effective
because it can quickly adapt to changes in a person’s behavior, making it
difficult for someone to replicate another person’s behavioral patterns.

This form of authentication is often used in conjunction with other forms of
authentication, such as passwords or PINs, to provide an additional layer of
security because, as we know, no single form of authentication is 100%
effective.

There are a couple of drawbacks of behavioral authentication:

It can be more intrusive than other forms of authentication, such as
passwords or PINs, because behavioral authentication requires users to
provide more personal information, such as their fingerprints or iris
scans.

Behavioral authentication can be less reliable than other forms since
behavioral patterns can change over time, making it difficult for the
system to accurately verify a person’s identity.

Despite these drawbacks, behavioral authentication is another powerful tool
to protect sensitive information and prevent identity theft.

Out-of-Band Authentication
Out-of-band authentication purposefully uses a separate communication
channel from the original channel the user used to authenticate that request.
For example, a user logging in to a website for the first time on a device
might receive a phone call to validate the request. By using an out-of-band
check, a service is able to raise the difficulty of breaking into an account,
since the attacker would need control of the out-of-band communication
channel as well.

Out-of-band checks can come in many forms. These forms should be chosen
based on the desired level of strength needed for each interaction:

A passive email can inform users of potentially sensitive actions that
have recently taken place.

A confirmation can be required before a request is completed.
Confirmation could be a simple “yes,” or it could involve entering a
TOTP code.

A third party could be contacted to confirm the requested action.

When used well, out-of-band authentication can be a useful tool to increase
the security of the system. As with all authentication mechanisms, some level
of taste is required to choose the right authentication mechanism and
frequency, based on the request taking place.

Single Sign-On
Given the large number of services users interact with, the industry would
prefer to decouple authentication from end services. Having authentication
decoupled provides benefits to both the service and the user:

Users only need to authenticate with a single service.

Authentication material is stored in a dedicated service, which can have
more stringent security standards.

Security credentials in fewer locations means less risk and eased
rotations.

Single sign-on (SSO) is a fairly mature concept. Under SSO, users
authenticate with a centralized authority, after which they will typically be
granted a token of sorts. This token is then used in further communication
with secured services. When the service receives a request, it contacts the
authentication authority over a secure channel to validate the token provided
by the client.

This is in contrast to decentralized authentication. A zero trust network
employing decentralized authentication will use the control plane to push
credentials and access policy into the data plane. This empowers the data

plane to carry out authentication on its own, whenever and wherever
necessary, while still being backed by control plane policy and concern. This
approach is sometimes favored over a more mature SSO-based approach
since it does not require running an additional service, though it introduces
enough complexity that it is not recommended.

SSO tokens should be validated against the centralized authority as often as
possible. Every call to the control plane to authorize an SSO token provides
an opportunity to revoke access or alter the trust level (as known to the
caller).

A popular mode of operation involves the service performing its own sign-
in, backed by SSO authentication. The primary drawback of this approach is
that it allows the control plane to authorize the request only once, and leaves
the application to make all further decisions. Trust variance and invalidation
is a key aspect of a zero trust network, so decisions to follow this pattern
should not be taken lightly.

EXISTING SSO OPTIONS
SSO has been around for a long time, and as such, there are many mature
protocols/technologies to support it, including these popular ones:

SAML

Security Assertion Markup Language is an XML-based
standard for securely exchanging authentication and
authorization data.

WS-Federation (WS-Fed)

WS-Fed is a protocol for negotiating the issuance of a
token. It can be used by applications (relying parties) as
well as identity providers (IdPs) for SSO. WS-Fed’s
credentials are carried in claims, and the most common
claim type is, ironically, a SAML assertion.

Kerberos

A mature protocol that is widely used in enterprise
environments. It’s very scalable and can be used to
support SSO for many users. However, it can be complex
to set up and configure.

OAuth

A popular protocol for authorization that can also be
used for SSO. While more straightforward to set up and
configure than SAML or Kerberos, it doesn’t work as well
with mobile devices.

OpenID Connect (OIDC)

An identity layer built on top of the OAuth 2.0 protocol. It
allows clients to verify the identity of the end user based
on the authentication performed by an authorization

server, as well as to obtain basic profile information
about the end user in an interoperable and RESTlike
manner.

CAS

The Central Authentication Service (CAS) is an open
source protocol for SSO. CAS provides enterprise SSO for
web and mobile applications. It also supports
authentication and authorization for RESTful web
services.

It is critical that authentication remains a control plane concern in a zero trust
network. As such, when designing authentication systems in a zero trust
network, aim for as much control plane responsibility as possible, and
validate authorization with the control plane as often as is reasonably
possible.

Workload Identities
A workload identity is a unique identifier assigned to a software or service
workload (such as an application, script, cron job, container, and so on) that
allows it to authenticate and access other services and resources. These
identities are inherently distinct from user identities due to their different
lifecycles and usage scenarios. As more organizations adopt DevSecOps, the
lifecycle of the workload identities needs to be fully automated, and their
usage should also be constantly monitored. A significant number of cloud
providers already support workload identities, making it simpler for
everyone in the ecosystem to utilize them. Following is a list of a few of
these:

Amazon (AWS)

Microsoft (Azure)

https://oreil.ly/2as--
https://oreil.ly/bizky

Google (GKE)

SECURE PRODUCTION IDENTITY FRAMEWORK FOR
EVERYONE (SPIFFE)

SPIFFE is a collection of open source specifications for a framework
that facilitates the provisioning and issuance of identities (including
workload identities) to services across heterogeneous environments and
organizational boundaries. The SPIFFE core specification includes three
main tenants:

SPIFFE ID

A standard that specifies how services identify
themselves to one another. These are used as Uniform
Resource Identifiers (URIs).

SPIFFE Verifiable Identity Document (SVID)

There is a standard for encoding SPIFFE IDs in a
cryptographically verifiable document known as a
SPIFFE Verifiable Identity Document (SVID).

Workload API

An API specification for issuing and/or retrieving SVIDs.

While SPIFFE primarily focuses on specification and framework, the
SPIFFE Runtime Environment (SPIRE) implements the SPIFFE APIs in a
production-ready manner and performs node and workload attestation in
order to securely issue SVIDs to workloads and verify the SVIDs of
other workloads based on a predefined set of conditions. You can learn
more about SPIRE architecture and implementation and real-world case
studies.

Both SPIFFE and SPIRE are graduated projects of the Cloud Native
Computing Foundation (CNCF).

https://oreil.ly/-82-L
https://oreil.ly/Dik0d
https://oreil.ly/Z1_Vw
https://oreil.ly/g0BVh
https://oreil.ly/yRxco
https://oreil.ly/bmO2f
https://oreil.ly/Awqk0

Moving Toward a Local Auth Solution
Local authentication that is extended out into remote services is another
authentication mechanism that is increasingly becoming a possibility. In this
system, users authenticate their presence with a trusted device, and then the
device is able to attest to that identity with a remote service. Open standards
like the FIDO Alliance’s UAF standard use asymmetric cryptography and
local device authentication systems (e.g., passwords and biometrics) to move
trust away from a large number of services to relatively few user-controlled
endpoints.

UAF, in a way, looks a lot like a password manager. However, instead of
storing passwords, it stores private keys. The authenticating service is then
given the user’s public key and is thereby able to confirm that the user is in
possession of the private key. By moving authentication into a smart local
device, a number of benefits emerge:

Replay attacks can be mitigated via a challenge-and-response system.

Man-in-the-Middle attacks can be thwarted by having the authentication
service refuse to sign the challenge unless it originated from the same
domain the user is visiting.

Credential reuse is nonexistent, since per-service credentials can be
trivially generated.

Authenticating and Authorizing a Group
Nearly every system has a small set of actions or requests that must be
closely guarded. The amount of risk one is willing to tolerate in this area
will vary from application to application, though there is practically no
lower limit.

One risk you encounter as you approach zero is the limited amount of trust
you should place in any single human being. Just like in real life, there are
many times in which it is desirable to gain the consent of multiple individuals
in order to authorize a particularly sensitive action. There are a couple of

ways that this can be achieved in the digital realm, and the cool part is, we
can cryptographically guarantee it!

Shamir’s Secret Sharing
Shamir’s Secret Sharing is a scheme for distributing a single secret among a
group of individuals. The algorithm breaks the original secret into n parts,
which can then be distributed (Figure 6-2). Depending on how the algorithm
was configured when the parts were generated, k parts are needed to
recalculate the original secret value. When protecting large amounts of data
using Shamir’s Secret Sharing, a symmetric encryption key is usually split
and distributed instead of using the algorithm directly on data. This is
because the size of the secret that is being split needs to be smaller than some
of the data used in the secret-sharing algorithm.

Figure 6-2. An example ssss session

A Unix/Linux version of this algorithm is called ssss. Similar applications
and libraries exist for other operating systems or programming languages.

Red October
Cloudflare’s Red October project is another approach to implementing group
authentication to access shared data. This web service uses layered
asymmetric cryptography to encrypt data such that a certain number of users
need to come together to decrypt the data. Encrypted data isn’t actually

https://oreil.ly/Y4spd
https://oreil.ly/qVKbV

stored on the server. Instead, only user public/private key pairs (encrypted
with a user-chosen password) are stored.

When data is submitted to be encrypted, a random encryption key is
generated to encrypt the data. This encryption key is then itself encrypted
using unique combinations of user-specific encryption keys, based on an
unlock policy that the user requests. In the simplest case, a user might encrypt
some data such that two people in a larger group need to collaborate to
decrypt the data. In this scenario, the original encrypted data’s encryption key
is therefore doubly encrypted with each unique pair of user encryption keys.

ABOUT DNS ROOT ZONE SIGNING
The DNS Root Zone Signing Ceremony is an interesting example of a
group authentication procedure. This ceremony is used to generate the
root keys upon which all DNSSEC trust is based. If the root key is
compromised, the entire DNSSEC system’s trustworthiness would be
compromised, so the root key ceremony is built specifically to mitigate
that risk.

The first ceremony occurred on June 16, 2010, and a new ceremony
occurs every quarter. The ceremony utilizes seven actors, each with a
different role. The ceremony mitigates the risk of compromise to a one-
in-a-million chance, assuming a dishonesty rate of 5% among the actors
in the ceremony. A strict procedural document is generated in order to
organize the ceremony. HSMs, biometric scanners, and air-gapped
systems are used to protect the digital key. In the end, a new
public/private key pair is generated and signed, continuing the internet’s
trust anchor’s status for another quarter. You can read more about the
signing ceremony on Cloudflare’s website, or you can view the materials
for each ceremony on IANA’s website.

See Something, Say Something

https://oreil.ly/SamQZ
https://oreil.ly/MR2tm

Users in a zero trust network, like devices, need to be active participants in
the security of the system. Organizations have traditionally formed dedicated
teams to focus on the security of the system. Those teams, more often than
not, took that mandate to mean that they were solely responsible for the
system’s security. Changes needed to be vetted by them to ensure that the
system’s security was not compromised. This approach produces an
antagonistic relationship between the security team and the rest of the
organization, and as result, reduces security.

A better approach is to build a culture of collaboration toward the security of
the system. Users should be encouraged to speak up if something they do or
witness looks odd or dangerous, even if it’s small. This sharing of
knowledge will give much better context on the threats that the security team
is working to defend against. Reporting phishing emails, even when users did
not interact with them, can let the security team know if a determined attacker
is attempting to infiltrate the network. Devices that are lost or stolen should
be reported immediately. Security teams might consider providing ways for
users to alert them day or night in the event that their device has gone
missing.

When responding to tips or alerts from users, security teams should be
mindful of how their response to the incident affects the organization more
broadly. A user who is shamed for losing a device will be less willing to
report the loss in a timely manner in the future. Similarly, a late-night false
alarm should be met with thanks to ensure that reporters don’t second-guess
themselves. As much as possible, try to bias the organization toward
overreporting.

Trust Signals
Historical user activity is a rich source of data for determining the
trustworthiness of a user’s current actions. A system can be built that mines
user activity to build up a model of expected behavior. This system will then
compare current behavior against that model as a method for calculating a
trust score of a user.

Humans tend to have predictable access patterns. Most people will not try to
authenticate multiple times a second. They also are unlikely to try to
authenticate hundreds of times. These types of access patterns are extremely
suspicious and are often mitigated via active methods like CAPTCHAs
(automated challenges that only a human is able to answer) or locked
accounts. Reducing false positives requires setting fairly high bars to be
actively banned. Including this activity in an overall threat assessment score
can help catch suspicious, but not obviously bad, behavior.

Looking at access patterns doesn’t need to be restricted to authentication
attempts. Users’ application usage patterns can also reveal malicious intent.
Most users tend to have fairly limited roles in an organization and therefore
might only need to access a subset of data that is available to them. In an
attempt to increase security, organizations may begin removing access rights
from employees unless they definitely need the access to do their job.
However, this type of restrictive access control can impact the ability of the
organization to respond quickly to unique events. System administrators are a
class of users that are given broad access, thereby weakening this approach
as a defense mechanism. Instead of choosing between these two extremes, we
can score the user’s activity in aggregate and then use their score to
determine if they are still trusted to access a particularly sensitive resource.
Having hard stops in the system is still important—it’s the less-clear cases
where the system should trust users, but verify their trustworthiness via
logged activity.

Lists of known bad traffic sources, like the one provided by Spamhaus, can
be another useful signal for the trustworthiness of a user. Traffic that is
originating from these addresses and is attempting to use a particular user’s
identity can point toward a potentially compromised user.

Geo-location can be another useful signal for determining the trustworthiness
of a user. We can compare the user’s current location against previously
visited locations to determine if it is out of the ordinary. Has the user’s
device suddenly appeared in a new location in a timeframe that they couldn’t
reasonably travel? If the user has multiple devices, are they reporting
conflicting locations? Geo-location can be wrong or misleading, so systems

shouldn’t weigh it too strongly. Sometimes users forget devices at home, or
geo-location databases are simply incorrect.

Scenario Walkthrough
Let’s run through a scenario walkthrough where Bob is making a request to a
high-impact resource. The key components are shown in Figures 6-3 through
6-6 and request analysis is done next.

Use Case: Bob Wants to View a Sensitive Financial
Report
Here is what we know about Bob’s request:

Bob is requesting access to sensitive, high-impact business financial
reports.

Bob is using his work laptop with device ID “ABC,” which is fully
compliant with organization policy.

Bob has used a password for authentication along with SMS as an MFA
method.

Bob is making the request during office hours.

Figure 6-3. Bob’s user identity data includes his name, authentication methods such as
passwords, and other MFA methods such as FIDO21 security keys, phone, and email

Figure 6-4. Activity logs record device activity and serve as an audit trail, which is useful for
determining anomalous and suspicious behavior from devices, and calculating trust scores

Figure 6-5. The trust engine evaluates and assigns a trust score to an access request using both
dynamic and static rules

Figure 6-6. The policy engine is ultimately responsible for granting or denying access requests

Request Analysis
1. Bob’s access request (action: print document, device-id: ABC,

authentication: pwd/mfa-SMS, location: Dallas, IP: 6.7.8.9, datetime:
28-july-2022-11:00am-est-timezone) reaches the enforcement
component.

2. The enforcement component forwards the access request to the policy
engine for approval.

3. The policy engine receives the request and consults with the trust engine
to determine the request’s trust score.

4. The trust engine evaluates the request:

It detects suspicious activities in the user activity log because the
IP address looks to be a common anonymous proxy exit node
address, and the user device is also unknown. It gives a low trust
score of 3.

Bob has also completed SMS-based MFA, so a trust score of 5 is
assigned.

The device is in compliance and had its most recent compliance
check less than 36 hours ago.

Finally, the trust engine computes the average of trust scores,
which is 4, and returns it to the policy engine.

5. The policy engine receives the trust score of 4 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the
request is made during the permissible office hours.

The rules 2–4 do not apply to the current access request because it
is specifically for a high-impact business resource, i.e., financial
reports.

The fifth rule applies to the current request as the trust score is less
than 7 and it is to gain access to financial reports. Manager
approval will be required.

The sixth rule does not apply to the current request as the request
trust score is not less than 3.

The seventh rule applies because the request is for high-impact
business resources and SMS was used for MFA instead of robust,

phishing-resistant MFA methods (e.g., a FIDO2 security key). The
result of this rule’s application is to deny access to the request.

The eighth rule will not be applicable since the request is not for
the help desk. This rule is only executed when no other rules are
executed.

The ninth rule, which is also a default rule, will not be applicable.
This rule is only executed when no other rules are executed.

The policy engine sends a deny action to the enforcement
component along with a suggested action to the user to utilize
phishing-resistant MFA methods (such as a FIDO2 security key)
rather than SMS as an MFA method. In addition, manager approval
will be necessary for access to high-impact business resources
because the trust score is very low.

7. The enforcement component receives the policy engine’s result and
denies Bob’s request to access the financial report. It also provides
user-friendly information about the decision for Bob to act and gain
limited access to the resource by using phishing-resistant MFA methods
(such as a FIDO2 security key) and asking the manager for approval of
the access.

Summary
This chapter focused on how to establish trust in users in a system. We talked
about how identity is defined and the importance of having an authority to
reference when checking the identity of a user in the system. Users need to be
entered into a system to have an identity, so we talked about some ideal ways
to bootstrap their identity. Identity needs to be stored somewhere, and that
system is a very valuable target for attackers. We talked about how to store
the data safely, the importance of limiting the breadth of data being stored in
a single location, and how to keep stored identity up to date as users come
and go.

With authoritative identity defined and stored, we turned our attention to
authenticating users that claim to have a particular identity. Authentication
can be an annoyance for users, so we discussed when to authenticate users.
We don’t want users to be inundated with authentication requests, since that
will increase the likelihood that they accidentally authenticate against a
malicious service. Therefore, finding the right balance is critical.

There are many ways that users can be authenticated, so we dug into the
fundamental concepts. We discussed several authentication mechanisms that
are in use today. We also looked at some authentication mechanisms that are
on the horizon as system security practices are responding to threats.

Oftentimes, increasing trust in a system of users involves creating procedures
where multiple users play a role to accomplish a goal. We discussed group
authentication and authorization systems like “two-person rules,” which can
be used to secure extremely sensitive data. We also talked about building a
culture of awareness in an organization by encouraging users to report any
suspicious activity.

Finally, zero trust networks can leverage user activity logs to build a profile
of users to compare against when evaluating new actions. We enumerated
some useful signals which can be used to build that profile.

The next chapter looks at how trust in applications can be built.

1 FIDO (Fast IDentity Online) is a set of open standard authentication protocols that promote
strong authentication and the elimination of passwords.

https://oreil.ly/cZJI4

Chapter 7. Trusting Applications

Marc Andreessen, a notable Silicon Valley investor, famously declared that
“software is eating the world.” In many ways, this statement has never been
truer. It is the software running in your datacenter that makes all of the magic
happen, and as such, it is no secret that we wish to trust its execution.

Code, running on a trusted device, will be faithfully executed. A trusted
device is a prerequisite for trusting code, which we covered in Chapter 5.
However, even with our execution environment secured, we still have more
work to do to trust that the code that’s running on a device is trustworthy.

As such, trusting the device is just half of the story. One must also trust the
code and the programmers who wrote it. With the goal being to ensure the
integrity of a running application, we must find ways to extend this human
trust from the code itself all the way to execution.

Trusting code refers to ensuring that the code used in software applications is
free from vulnerabilities, is produced by trusted sources, and has not been
tampered with.

To establish trust in code, there are a few minimum requirements that need to
be met:

The people producing the code are themselves trusted and follow
secure coding practices.

The code was scanned for vulnerabilities, signed, and accurately
processed to produce a trustworthy application.

Trusted applications are properly deployed to the infrastructure to be
run.

Trusted applications are continually monitored for updates to
components, dependencies, and any attempts to coerce the application
with malicious actions.

This chapter will discuss approaches to securing each of these steps, with a
focus on the inheritance of trust from human to production application.

Understanding the Application Pipeline
The creation, delivery, and execution of code within a computer system is a
very sensitive chain of events. These systems are an attractive target for
adversaries due to the ability they offer to gain greater access. Attack vectors
exist at every step, and subversion at these stages can be very difficult to
detect.

Understanding the entire application pipeline, including the development,
build, and distribution process, is essential. The pipeline starts with
development, where applications are created and tested. The next step is the
build process, where the application is compiled and packaged for
distribution. Finally, the application is distributed to end users or deployed
in a production environment. Therefore, we must work to ensure that every
link of this chain (shown in Figure 7-1) is secured in a way that makes
subversion detectable.

This process is similar to supply chain security, and the collective efforts of
governments around the world to enhance security. Ensuring that military
equipment is securely built/sourced is critical in ensuring the effectiveness of
the fighting force, and software creation and delivery are no different.

SUPPLY CHAIN SECURITY
Supply chain security refers to the steps taken to protect the integrity and
safety of the supply chain. It includes ensuring that products are not
tampered with or contaminated during production, transportation,
storage, and distribution. It also involves verifying that the products meet
all safety and quality standards. Here are a few examples of supply chain
security being compromised.

In December 2020, a malicious attack on SolarWinds’ software supply
chain was exposed. As one of the leading providers of IT management
and network monitoring solutions to organizations worldwide, this posed
an immense threat to all those who relied upon their services. By
compromising SolarWinds’ software build process, the attacker was
able to insert malicious code into a software update, which was then
distributed to thousands of customers. The incident had a widespread
impact, with several government agencies and large corporations
reporting that their networks had been compromised due to the attack.

In March 2023, 3CX, a well-known provider of VoIP software with over
12 million users, disclosed that malicious code had infected its desktop
applications for both Windows and macOS. This attack was carried out
by the North Korean hacker group UNC4736, which has been reported to
be associated with the APT (Advanced Persistent Threat) group Lazarus.
This incident was also the first reported case of a double supply chain
attack where later attacks capitalize on the earlier attack; it involved
compromised software chains of both 3CX and X_TRADER. Additional
information may be found here.

These incidents reiterate the value of secure supply chains and
emphasize the need for organizations to prioritize supply chain security
as a critical component of their overall cybersecurity strategy. Not only
do these events remind us of the dangers associated with supply chain
attacks, but they also urge companies to integrate more secure measures
into their cybersecurity plans. By taking action today, we can safeguard
against future threats.

https://oreil.ly/A9dUG
https://oreil.ly/A9dUG
https://oreil.ly/1Q5A1

An application build pipeline typically begins with source code stored in a
repository such as Git. The code is then automatically built, tested, and
packaged through continuous integration (CI) and continuous delivery (CD)
processes. Next, code signing by a trusted third party verifies the integrity of
the code and ensures that it is free from any malicious code. The signed code
is then distributed to the appropriate servers or devices where it is executed.
Throughout the entire process, continuous monitoring is performed to identify
and remediate any security incidents.

DEFENDING AGAINST SOFTWARE SUPPLY CHAIN
ATTACKS

According to the Cybersecurity & Infrastructure Security Agency (CISA),
a Software Bill of Materials (SBOM) has “emerged as a key building
block in software security and supply chain management.” The Software
Bill of Materials is an inventory of the components and dependencies
used in a software application, which plays a crucial role in ensuring the
trustworthiness of applications.

Also, CISA and the National Institute of Standards and Technology
(NIST) have jointly released recommendations on how software
customers and vendors can use the NIST Cybersecurity Supply Chain
Risk Management (C-SCRM) program and the Secure Software
Development Framework (SSDF) to identify, assess, and mitigate
software supply chain risks. Further details are included here.

In a secure software delivery chain, every step of the process should be fully
auditable, with cryptographic validation occurring at each critical point.
Generally speaking, these steps can be broken down into four distinct phases
(Figure 7-1):

Source code

Build/compilation

https://oreil.ly/odxHL
https://oreil.ly/3uybL

Distribution

Execution

Let’s start with trusting the source code itself.

Figure 7-1. A build pipeline depends on both the security of the engineers creating source code
and configuring the system, and the security of the components of the pipeline

Trusting Source Code
Source code is the first step in running any piece of software. To put it very
simply, it’s difficult to trust source code that is written by an untrusted human.
Even with careful code auditing, it is still possible for a malicious developer
to purposefully encode (and hide) a vulnerability in plain sight. While even
well-meaning developers can inadvertently add weakness to an application,
a zero trust network will focus on identifying malicious use instead of
removing trust from those users. Setting the trusted developer problem aside

for a minute, we still face the problem of securely storing and distributing the
source code itself. Typically, source code is stored in a centralized code
repository, against which many developers interact and commit work. These
repositories must also fall under tight control, particularly if they are being
used directly by systems that build/compile the code in question.

Securing the Repository
Maintaining traditional security approaches when it comes to securing a
software repository is still effective, and does not prohibit the addition of
more advanced security features. These include basic principles such as the
principle of least access, whereby users are only given as much access to the
repository as is required to complete the task at hand. In practice, this usually
manifests itself as heavily limited/restricted write access.

While this approach is still valid and recommended, the story has changed a
little bit with the introduction of distributed source control. With the code
repository living in multiple places, it is not always possible to secure a
single, centralized entity. In this circumstance, however, there remains an
analog for this centralized repository—the system storing the code from
which the build system reads.

In this case, it is still highly desirable to protect this system through
traditional means; however, the problem becomes more difficult, since code
can enter the distributed repository in any number of ways. The logical
extension, then, is that securing the build source repository alone is not
enough.

Authentic Code and the Audit Trail
Many version control systems (VCSs), particularly those that are distributed,
store source history using cryptographic techniques. This approach, called
content-addressable storage, uses the cryptographic hash of the content being
stored as the identifier of that object in a database, rather than its location or
coordinates. It’s possible to see how a source file could be hashed and
stored in such a database, thereby ensuring that any change in the source file

results in a new hash. This property means that files are stored immutably:
it’s impossible to change the contents of the files once stored.

Some VCSs take this storage mechanism a step further by storing the history
itself as an object in the content-addressable database. Git, a popular
distributed VCS project, stores the history of commits to the repository as a
directed acyclic graph (DAG). The commits are objects in the database,
storing details like the commit time, author, and identifiers of ancestor
commits. By storing the cryptographic hashes of ancestor commits on each
commit itself, we form a Merkle tree, which allows one to cryptographically
validate that the chain of commits are unmodified (Figure 7-2).

If a commit in the DAG is modified, its update will affect all the descendant
commits in the graph, changing each commit’s content, and by extension, its
identifier. With the source history distributed to many contributors, the system
gains another beneficial property: it’s impossible to change the history
without other contributors noticing.

Figure 7-2. Git’s database makes unwanted changes difficult, since objects are referenced using
a hash of their contents

Storing the DAG in this manner gives us tamper-proof history: it’s
impossible to change the history subversively. However, this storage does
nothing to ensure that new commits in the history are authorized and
authentic. Imagine for a moment that a trusted developer is persuaded to pull
a malicious commit into their local repository before pushing it to the official
repository. This commit has now been added to the repository by leaning on

the trusted developer’s push access. Even more concerning, the authorship
metadata is just plain text: a malicious committer can put whatever details
they want in that field (a fact that was used amusingly to make commits
appear to be authored by Linus Torvalds on GitHub).

To guard against this attack vector, Git has the ability for commits and tags to
be signed using the Gnu Privacy Guard (GnuPG) key of a trusted developer.
Tags, which point to the head commit in a particular history, can be signed
using a GnuPG key to ensure the authenticity of a release. Signed commits
allow one to go a step further and authenticate the entire Git history, making it
impossible for an attacker to impersonate another committer without first
stealing that committer’s GnuPG key.

Signed source code clearly provides significant benefits and should be used
wherever possible. It provides robust code authentication not only to humans,
but machines too. This is especially important if CI/CD systems build and
deploy the code automatically. A fully signed history allows build systems to
cryptographically authenticate the code as trusted before compiling it for
deployment.

IN THE BEGINNING, THERE WAS NOTHING
Many repositories begin with unsigned commits, transitioning to signed commits later on. In this
brownfield case, the first commit to be signed is essentially endorsing all commits that came before it.
This is important to understand, as you may wish to perform an audit at this time. Having said that,
the overhead or difficulty of performing such an audit should not dissuade or delay the transition to
signed code; the audit, if you choose to do one, can be performed in due time.

Code Reviews
As we learned in Chapter 6, it can be dangerous to concentrate powerful
capabilities onto a single user. This is no different when considering source
code contributions. Signed contributions enable us to authenticate the
developer committing the code, but do not ensure that the code being
committed is correct or safe. Of course, we do place a nontrivial amount of

https://oreil.ly/Sbaa2

trust in developers, though this does not mean that said developer should
unilaterally commit code to sensitive projects.

To mitigate this risk, most mature organizations implement a code review
process. Under code review, all contributions must be approved by one or
more additional developers. This simple process drastically improves not
just the quality of the software, but also reduces the rate at which
vulnerabilities are introduced, whether they be intentional or accidental.

Trusting Builds
Build servers play a critical role in the software development lifecycle as
they automate the process of compiling, testing, and packaging code into a
deployable software product. In addition, build servers are also responsible
for transforming code into executable code and ensuring that it meets quality
and security standards.

Because these servers have elevated access and produce code that is
executed directly into production, they are also frequently targeted by
persistent threats.

Detecting artifacts that have been compromised during the build stage can be
very difficult, so it is important to apply strong protections to these services.

Software Bill of Materials (SBOM): The Risk
In trusting a build system, there are generally three things that we want to
assert:

The source code it built is the code we intended to build.

The build process/configuration is what we intended.

The build itself was performed faithfully, without manipulation.

Build systems can ingest signed code and produce a signed output, but the
function(s) applied in between (i.e., the build itself) is generally not

protected cryptographically—this is where the most significant attack vector
lies.

This particular vector is a powerful one, as shown in Figure 7-3. Without the
right processes and validation, subversion of this kind can be difficult or
impossible to detect. For instance, imagine a compromised CI/CD system
that ingests signed C code, and compiles it into a signed binary, which is then
distributed and run in production. Production systems can validate that the
binary is signed, but would have no way of knowing if additional malicious
code has been compiled in during the build process. In this way, a seemingly
secure system can successfully run malicious code in production without
detection. Perhaps even worse, the consumers are fooled into thinking the
output is safe. This break in the chain poses a great threat, and is a powerful
attack vector.

Figure 7-3. The build configuration and its execution are not protected cryptographically, in
contrast to the source code and the generated artifact

Due to the sensitive nature of the build process, outsourcing the
responsibility should be carefully evaluated. Things like reproducible builds
can help identify compromises in this area (more on that in a bit), but can’t
always prevent their distribution. Is this really something you want a third-
party provider to do for you? How much do you trust them? Their security
posture should be weighed against your own chance of being a high-value
target.

HOST SECURITY IS STILL IMPORTANT
This section focuses on securing various steps of the software build process, but it is important to
note that the security of the build servers themselves is still important. We can secure the input,
output, and configuration of the build, but if the build server is compromised, then it can no longer be
trusted to faithfully perform its duties. Reproducible builds, immutable hosts, and the zero trust model
itself can help in this regard.

Trusted Input, Trusted Output
If we think of the build system as a trusted operation, it’s clear that we need
to trust the input of that operation in order to produce trusted output.

Let’s start with trusting the input to the build system. Earlier, we discussed
mechanisms for trusting the source control systems. The build system, as a
consumer of the version control system, is responsible for validating the
trustworthiness of the source. The version control system should be accessed
over an authenticated channel, commonly TLS. Additionally, for extra
security guarantees, tags and/or commits should be signed, and the build
system should validate those signatures—or chain of signatures—before
starting a build.

The build configuration is another important input to the build system.
Attacking the build configuration could allow an attacker to direct the build
system to link against a malicious library. Even seemingly safe optimization
flags can be malicious in security-critical code, where timing attack
mitigation code can be accidentally optimized away. Putting this
configuration under source control, where it can be versioned and attested to
via signed commits, helps to ensure that the build configuration is also a
trusted input.

With the input sufficiently secured, we can turn our attention to the output of
the build process. The build system needs to sign the generated artifacts so
downstream systems can validate their authenticity. Build systems typically
also generate cryptographic hashes of the build artifacts to guard against
corruption or malicious attempts to replace the binaries, once produced.

Securing the build artifacts and hashes, and then distributing them to
downstream consumers, completes the trusted output of the build system.

Reproducible Builds
Reproducible builds are the best tool we have in guarding against subversion
of the build pipeline. In short, software supporting reproducible builds is
compiled in a deterministic way, ensuring that the resulting binary is exactly
the same for a given source code, no matter who built it. This is a very
powerful property, as it allows multiple parties to examine the source code
and produce identical builds, thus gaining confidence that the build process
used to generate a particular binary was not tampered with.

This can be done in a number of ways, but it generally involves a codified
build process, and enables developers to set up their own build environment
to produce binaries that match the distributed versions bit for bit. With
reproducible builds, one can “watch” the output of a CI/CD system and
compare its output to results compiled locally. In this way, malicious
interference or code injection during the build process can be easily
detected. When combined with signed source code, we arrive at a fairly
robust process that is able to authenticate both the source code and the binary
produced by it.

VIRTUALIZED BUILD ENVIRONMENTS ENABLE
REPRODUCIBLE BUILDS

Having reproducible builds sounds easy on paper, but reproducing a built binary so it’s byte-for-byte
identical is a very hard problem. Distributions have historically built packages inside a virtual
filesystem (a chroot jail) to ensure that all dependencies of the build are captured in the build
configuration. Virtual machines or containers can be useful tools to ensure that the build environment
is fully insulated from the host running the build.

Decoupling Release and Artifact Versions
Immutable builds are critical in ensuring the security of a build and release
system. Without them, replacing a known good version is possible, opening

https://oreil.ly/BeSh0

up the door for attacks that target the underlying build artifact. This would
enable an attacker to masquerade a “bad” version as a “good” version. For
this reason, artifacts generated by build systems should have Write Once
Read Many semantics.

Given the immutable artifact requirement, a natural tension arises with the
versioning of those artifacts. Many projects prefer to use meaningful version
numbers (e.g., semantic versioning) in their releases to communicate the
potential impact to downstream consumers with an upgrade of their software.
This desire to attach meaning to the version number can be difficult to
incorporate into a build system that needs to ensure that every version is
immutable.

For example, when working toward a major release, a project might have a
misconfigured build that causes the build system to produce incorrect output.
The maintainers now face a choice. They could republish the release using a
patch-level bump, or they might decide to bend the rules and republish the
same version using a new build artifact. Many projects choose the latter
option, preferring the benefit of a clearer marketing story than the more
correct reversion. This is a bad habit to get into when considering the
masquerade just described.

It’s clear from this example that in either case, two separate build artifacts
were produced, and the version number associated with the build artifact is a
separate choice for the project. Therefore, when creating a build system, it’s
better to have the build system produce immutable versions independent of
the publicly communicated version. A later system (the distribution system)
can manage the mapping of release versions to build artifact versions. This
approach enables us to maintain immutable build artifacts without sacrificing
usability or introducing bad security practices.

Trusting Distribution
The process of choosing which build artifacts to deliver to downstream
consumers is called distribution. The build system produces many artifacts,
some of which are meant for downstream consumption. Therefore, we need

to ensure that the distribution system maintains control over which artifacts
are ultimately delivered.

Promoting an Artifact
Based on our earlier discussion on immutable build artifacts, promotion is
the act of designating a build artifact as the authoritative version without
changing the contents of that artifact. This act itself should be immutable:
once a version is assigned and released, it cannot be changed. Instead, a new
artifact needs to be produced and released under an incrementally higher
version number.

This constraint presents a chicken-and-egg scenario. Software typically
includes a way to report its version number to the user, but if the version
number isn’t assigned until later in the build process, how does one add that
version information without changing the build artifact?

A naive approach would be to subtly change the artifact during the promotion
process, for example, by having the version number stored in a trivially
modified location in the build artifact. This approach, however, is not
preferred. Instead, release engineers should make a clear separation between
the publicly released version number and the build number, which is an extra
component of the release information. With this model, many build artifacts
are produced that use the same public release version, but each build is
additionally tagged with a unique build number (Figure 7-4). The act of
releasing that version is therefore choosing the build artifact that will be
signed and distributed. Once such a version is released, all new builds
should be configured to use the next target version number.

Figure 7-4. This Chromium public release version is 117.0.5938.92, using the versioning format
MAJOR.MINOR.BUILD.PATCH

Of course, this promotion must be communicated to the consumer in a way
that they can validate they are in possession of the promoted build, and not
some intermediary and potentially flawed build. There are a number of ways
to do this, and it is largely a solved problem. One solution is to sign the
promoted artifacts with a release-only key, thus communicating to the
consumers that they have a promoted build. Another way to do this is to
publish a signed manifest, outlining the released versions and their
cryptographic hashes. Many popular package distribution systems, such as
APT, use this method to validate builds obtained from their distribution
systems.

Distribution Security
Software distribution is similar to electricity distribution, where electricity
is generated by a centralized source, and carried over a distribution network
in order to be delivered to a wide consumer base. Unlike electricity,
however, the integrity of the produced software must be protected while it
transits the distribution system, allowing the consumer to independently
validate its integrity. There are a number of widely adopted package
distribution and management systems, practically all of which have
implemented protections around the distribution process and allow
consumers to validate the authenticity of packages received through them.
Throughout this section, we will use the popular package management
software Advanced Packaging Tool (APT) as an example of how certain

concepts are implemented in real life, though it is important to keep in mind
that there are many options available to you—APT is merely one.

Integrity and Authenticity
There are two primary mechanisms used to assert integrity and authenticity in
software distribution systems: hashing and signing. Hashing a software
release involves computing and distributing a cryptographic hash
representing the binary released, which the consumer can validate to ensure
that the binary has not been changed since it left the hands of the developer.
Signing a release involves the author encrypting the hash of the release with
their private key, allowing consumers to validate that the software was
released by an authorized party. Both methods are effective, and are not
necessarily mutually exclusive. To better understand how these methods can
be applied in a distribution system, it is useful to look at the structure and
security of an APT repository.

An APT repository contains three types of files: a Release file, a Packages
file, and the packages themselves. The Packages file acts as an index for all
of the packages in the repository. It stores a bit of metadata on every package
the repository contains, such as filenames, descriptions, and checksums. The
checksum from this index is used to validate the integrity of the downloaded
package before it is installed. This provides integrity, assuring us that the
contents have not changed in flight. It is, however, mostly only effective
against corruption, since an attacker can simply modify the index hashes if
the goal is to deliver modified software. This is where the Release file
comes in.

The Release file contains metadata about the repo itself (as opposed to the
Packages file, which stores metadata about the packages contained within it).
This includes things like the name and version of the OS distribution the repo
is meant for. It also includes a checksum of the Packages file, allowing the
consumer to validate the integrity of the index, which in turn can validate the
integrity of the packages we download. That’s great, except an attacker can
simply modify the Release file with the updated hash of the Packages file and
be on their way.

So, we introduce cryptographic signatures (Figure 7-5). A signature provides
not only integrity for the contents of the signed file (since a hash is included
in the signature), but also authenticity, since successful decryption of the
signature proves that the generating party was in the presence of the private
key.

Using this principle, the maintainer of the software repo signs the Release
file with a private key, to which there is a well-known and well-distributed
public key. Any time the repo is updated, package file hashes are updated in
the index, and the index’s final hash is updated in the Release file, which is
then signed. This chain of hashes, the root of which is signed, provides the
consumer with the ability to authenticate the software they are about to
install.

In the event that you’re unable to sign a software release in some way, it is
essential to fall back to standard security practices. You will need to ensure
that all communication is mutually authenticated—this means traffic to, from,
and in between any distribution repositories. Additionally, you’ll need to
ensure that the storage the repository leverages is adequately secured, be it
Amazon Simple Storage (Amazon S3), or otherwise.

Figure 7-5. The maintainer signs the Release file, which contains a hash of the Packages index,
which contains hashes of the packages themselves

Trusting a Distribution Network
When distributing software with a large or geographically disparate
consumer base, it is common to copy the software to multiple locations or
repositories in order to meet scaling, availability, or performance challenges.
These copies are often referred to as mirrors. In some cases, particularly
when dealing with publicly consumed software, the servers hosting the
mirrors are not under the control of the organization producing the software.
This is obviously a concern, and underscores the requirement of a software
repo to be authenticated against the author (and not the repo owner).

Referring back to APT’s hashing and signing scheme, it can be seen that we
can, in fact, authenticate the Release file against the author using its signature.
This means that for every mirror we access, we can check the Release
signature to validate that the mirror is in fact a faithful copy of the original
release.

One might think that by signing the Release file, software can be distributed
through untrusted mirrors safely. Additionally, repositories are often hosted

without TLS under the assertion that the signing of the release is sufficient for
protecting the distribution network. Unfortunately, both of these assertions
are incorrect.

There are several classes of attacks that open up when connecting to an
untrusted mirror, despite the fact that the artifact you’re obtaining is
ultimately signed. For instance, a downgrade to an older (signed) version can
be forced, as the artifact served will still be legitimate. Other attack vectors
can include targeting the package management client itself. In the interest of
protecting your clients, always make sure they are connecting to a trusted
distribution mirror.

The dearth of TLS-protected repositories presents another vulnerability to
the distribution of software. Attackers that are in a position to modify the
unprotected response could perform the same attacks that an untrusted mirror
could. Therefore, the best solution to this problem is moving package
distribution to TLS-protected mechanisms. By adding TLS, clients can
validate that they are in fact connecting to a trusted repository and that no
tampering of the communication can occur.

IMPROVING THE SOFTWARE SUPPLY CHAIN INTEGRITY
Cyberattacks like those on SolarWinds, Codecov, etc., have exposed the severe consequences of
supply chain integrity flaws, which have caused significant disruption. In addition, they have
demonstrated that there are inherent risks not only in the code itself, but also at multiple locations in
the complex process of incorporating that code into software systems, or the software supply chain.
This is where frameworks like Supply-chain Levels for Software Artifacts (SLSA) can assist with
automation that tracks code handling from source to binary, safeguarding against tampering
regardless of the software supply chain’s complexity. This also instills confidence that the analysis
and review conducted on the source code will continue to apply to the binary after the build and
distribution process.

Humans in the Loop
With a secure pipeline crafted, we can make considered decisions on where
humans are involved in that pipeline. By limiting human involvement to only
a few key points, the release pipeline stays secure while also ensuring that

https://oreil.ly/d77Sk

attackers are not able to leverage automation in the pipeline to deliver
malicious software. The ability to commit code to the version control system
is a clear spot where humans are involved. Depending on the sensitivity of
the project, requiring humans to only check in signed commits provides
strong confidence that the commit is authentic.

Once committed, humans needn’t be involved in the building of software
artifacts. Those artifacts should ideally be produced automatically in a
secured system. Humans should, however, be involved in the process of
choosing which artifact is ultimately distributed. This involvement could be
implemented using various mechanisms: copying an artifact from the build
database to the release database or tagging a particular commit in source
control, for example. The mechanism by which humans certify a releasable
binary doesn’t matter much, as long as that mechanism is secured.

It’s tempting when building secure systems to apply extreme measures to
mitigate any conceivable threat, but the burden placed on humans should be
balanced against the potential risk. In the case of software that is widely
distributed, the private signing key should be well guarded, since the effort of
rotating a compromised key would be extreme. Organizations that release
software like this will commonly use “code signing ceremonies,” where the
signing key is stored on a hardware security module (HSM) and unlocked
using authorization from multiple parties, as a mitigation against the theft of
this highly sensitive key. For internal use-only software, the effort to rotate a
key might be reasonably less, so more lax security practices are reasonable.
An organization might still prefer a code signing ceremony for particularly
sensitive internal applications—a system that stores credit card details, for
example.

CONSEQUENCES OF INSECURE CODE SIGNING SYSTEM
As mentioned earlier in the chapter, in 2020, SolarWinds, a leading IT management and monitoring
software provider, fell victim to a highly sophisticated cyberattack. The attackers compromised the
company’s software development environment and inserted malicious code into its Orion platform,
distributed to numerous government agencies, Fortune 500 companies, and other organizations
around the world. The attackers used a valid code signing certificate to sign the compromised
software update, allowing it to bypass security measures and infiltrate targeted networks. This
incident highlights the importance of securing code signing keys. Organizations with higher risk
should consider implementing robust security measures, like code signing ceremonies, to protect their
digital assets from potential attacks.

Trusting an Instance
Understanding what is running in your infrastructure is important when
designing a zero trust network. After all, how can you know what to expect
on your network if you don’t know what to expect on your hosts? A solid
understanding of the software (and versions) running in your datacenter will
go a long way in both breach detection and vulnerability mitigation.

Upgrade-Only Policy
Software versions are important constructs in determining exactly which
version of the code you have and how old it is. Perhaps most importantly,
they are used heavily in order to determine what vulnerabilities one might be
exposed to, given the version they are running.

Vulnerability announcements/discoveries are typically associated with a
version number (online service vulnerabilities being the exception), and
generally include the version numbers in which the vulnerability was fixed.
With this in mind, we can see that it might be desirable to induce a version
downgrade in order to expose a known vulnerability. This is an effective
attack vector, as the software being coerced to run is frequently authorized
and trusted, since it is a perfectly valid release, albeit an older one.

If the software is built for internal distribution, perhaps the distribution
system serves only the latest copy. Doing this prevents a compromised or

misconfigured system from pulling down an old version that may contain a
known vulnerability. It is also possible to enforce this roll-forward mentality
in hardware. Apple iOS famously uses a hardware security chip to validate
software updates and to ensure that only signed software built after the
currently installed software can be loaded.

Authorized Instances
The importance of knowing what’s running is more nuanced than simply
understanding what is the latest deployed version. There are many edge cases
that arise, such as a host that has fallen out of the deployment system—one
that has been previously authorized but is now “rogue” by dint of no longer
receiving updates. To guard against cases like this, it’s critical that running
instances be individually authorized.

It is possible to use techniques described in Chapter 4 to build dynamic
network policy in an effort to authorize application instances, but network
policy is often host/device oriented rather than application oriented. Instead,
we can leverage something much more application-centric in the pursuit of
authorizing a running instance: secrets.

Most running applications require some sort of secret in order to do their
job. This secret can manifest itself in many ways: an API key, an X.509
certificate, or even credentials to a message queue are common examples.
Applications must obtain the secret(s) in order to run, and furthermore, the
secret must be valid. The validity of a secret (as obvious as it sounds) is the
key to authorizing a running application, as with validation comes
invalidation.

Attaching a lifetime to a secret is extremely effective in limiting its abuse. By
creating a new secret for every deployed instance and attaching a lifetime to
the secret, we can assert that we know precisely what is running, since we
know precisely how many secrets we have generated, who we gave them to,
and their lifetimes. Allowing secrets to expire mitigates the impact of
“rogue” instances by ensuring they will not operate indefinitely.

Of course, someone must be responsible for generating and injecting these
secrets at runtime, and this is no small responsibility. The system carrying
this responsibility is ultimately the system that is authorizing the instance to
run. As such, it makes sense for this responsibility to fall in the hands of the
deployment system, since it already carries similar responsibility.

TRUSTED THIRD PARTIES IN INSTANCE
AUTHORIZATION

Rather than giving your deployment system direct access to secrets, it is
possible to leverage a trusted third party, allowing the deployment
system to instead assign policy dictating which secrets the running
instance can access. HashiCorp’s Vault, for instance, has a feature called
response wrapping in which an authorized party can request a secret to
be generated and stored for later retrieval. In the context of a deployment
system, the deploy itself could contact Vault and direct the creation of
secrets on behalf of the authorized instances, injecting a one-time token
into the runtime, which the application can use to retrieve the generated
secrets, as shown in Figure 7-6.

In such a system, the deployment service notifies the secret management
service of the impending changes, authorizing the new application
instances. During the deploy itself, the deployment service injects key(s),
which the new instances use to identify themselves to the secret
management system, which is expecting their request. The secret
management system then provisions unique time-bound credentials,
returns them to the application, and further continues to manage their
lifecycle.

Figure 7-6. Example flow of a system that provisions per-deployment credentials

It doesn’t take much thought to realize the power of a system that can create
and (potentially) retrieve secrets. With great power comes great
responsibility. If allowing an autonomous system to generate and distribute
secrets comes with too much risk for your organization, you might consider
including a human at this step. Ideally, this would manifest as a human-
approved deployment in which a TOTP or other authenticating code is
provided. This code will, in turn, be used to authorize the creation/retrieval
of the secrets by the deployment system.

Runtime Security
Trusting that an application instance is authorized/sanctioned is only half of
the concern. There is also the need to validate that it can run safely and
securely through its lifecycle. We know how to deploy an application

securely, and validate that its deployment is authorized, but will it remain an
authorized and trustworthy deployment for the entirety of its life?

There are many vectors that can compromise perfectly authorized application
instances, and it might be no surprise to learn that these are the most
commonly used vectors. For instance, it is typically easier to corrupt an
existing government agent than it is to masquerade as one or attempt to
become one. For this reason, individuals with outstanding debt are commonly
denied security clearance. They might be fully trusted at the time they are
granted clearance, but how susceptible are they to bribery if they are in debt?
Can they be trusted in this case?

Secure Coding Practices
Most (all?) application-level vulnerabilities start with a latent bug, which an
attacker can leverage to coerce the trusted application to perform an
undesirable action. Fixing each bug in isolation will result in a game of
whack-a-mole, where developers fix one security-impacting bug only to find
two more. Truly mitigating this exposure requires a shift in the mindset of the
application developers to secure coding practices. Injection attacks, where
user-supplied data is crafted to exploit a weakness in an application or
related system, commonly occur when user data is not properly validated
before being processed. This type of attack is mitigated by introducing
several layers of defenses. Application libraries will carefully construct
APIs that avoid trusting user-supplied data. Database querying libraries, for
example, will provide APIs to allow the programmer to separate the static
query from variables that are provided by the user. By instituting a clear
separation between logic and data, the potential for injection attacks is
greatly reduced.

Having clear APIs can also support automated scans of application software.
Security-aware organizations are increasingly running automated analysis
tools against their source code to detect and warn application developers of
insecure coding practices. These systems warn about using insecure APIs,
for example, by highlighting database queries that are constructed using string
concatenation instead of the API discussed earlier. Beyond warning about

insecure APIs, application logic can be traced to identify missing checks. For
example, these tools might confirm that every system transaction includes
some authorization check, which mitigates vulnerabilities that allow
attackers to reference data that they should not be allowed to access. These
examples represent only a handful of the capabilities possessed by code
analysis tools.

Proactively identifying known vulnerabilities is useful, but some
vulnerabilities are too subtle to deterministically detect. As a result, another
mitigation technique in use is fuzzing. This practice sends random data to
running applications to detect unexpected errors. These errors, when
exposed, are often the sort of weaknesses that attackers use to gain a foothold
in the system. Fuzzing can be executed as part of a functional testing suite
early in the build pipeline, or even continuously against production
infrastructure.

There are entire books written on secure coding practices, some of which are
dependent on the type of application being created. Programmers should
familiarize themselves with the appropriate practices to improve the security
of their applications.

Many organizations choose to have security consultants inspect their
applications and development practices to identify problems.

Isolation
Isolating deployed applications by constraining the set of resources they can
access is important in a zero trust network. Applications have traditionally
been executed inside a shared environment, where a user’s applications are
running in an execution environment with very few constraints on how those
applications can interact. This shared environment creates a large amount of
risk should an application be compromised, and presents challenges similar
to the perimeter model.

Application isolation seeks to constrain the damage of a potentially
compromised application by clearly defining the resources that are available

to the application. Isolation will constrain capabilities and resources that the
operating system provides:

CPU time

Memory access

Network access

Filesystem access

System calls

When implemented at its best, every application is given the least amount of
access necessary to complete its work. A well-constrained application that
becomes compromised will quickly find that no additional leverage in the
larger system is gained. As a result, by isolating applications, the potential
damage from a compromised application is greatly reduced. In a
multiprocess environment (e.g., a server running several services), other
still-safe services are protected from attempts to move laterally on that
system.

Application isolation can be accomplished using a number of different
technologies:

SELinux, AppArmor FreeBSD jails

Virtualization/containerization

Apple’s App Sandbox

Windows Isolated Applications

Docker

Kubernetes

Firejail

Google’s gVisor

Isolation is generally seen as breaking down into two types: virtualization
and shared kernel environments. Virtualization is often considered more
secure, since the application is contained inside a virtual hardware
environment, which is serviced by a hypervisor outside the virtual machine’s
(VM) execution environment. Having a clear boundary between the
hypervisor and the VM creates the smallest surface area of the two.

Shared kernel environments, like those used in containerized or application
policy systems, provide some isolation guarantees, but not to the same degree
as a fully virtualized system. A shared kernel execution environment uses
fewer resources to run the same set of applications, and is therefore gaining
favor in cost-conscious organizations.

As virtualization tries to address the resource efficiency problem by
providing more direct access to the underlying hardware, the security
benefits of the virtualized environment begin to look more like the shared
kernel environment. Depending on your threat model, you may choose to not
share hardware at all.

Active Monitoring
As with any production system, careful monitoring and logging is of the
utmost importance, and is particularly critical in the context of security.
Traditional security models focus their attention on external attack vectors.
Zero trust networks encourage the same level of rigor for internal activity.
Early detection of an attack could be the difference between complete
compromise and prevention altogether.

Apart from the general logging of security events throughout the
infrastructure, such as failed or successful logins, which is considered
passive monitoring, there exists an entire class of active monitoring as well.
For instance, the fuzzing scans we previously discussed can take time to turn
up new vulnerabilities—perhaps more time than you’re willing to spend
early on in the release pipeline. An active monitoring strategy advocates that
the scans also be run continuously against production.

DON’T DO THAT IN PRODUCTION!
Occasionally, the desire to take certain actions in production can be met with resistance for fear of
impacting the availability or stability of the overall system. Security scans frequently fall into this
bucket. In reality, if a security scan can destabilize your system, then there is a greater underlying
problem, which might even be a vulnerability in and of itself. Rather than avoiding potentially
dangerous scans in production, ask why they might be risky, and work to ensure that they can be run
safely by resolving any system deficiencies contributing to the concern.

Of course, fuzzing is just one example. Automated scanning can be a useful
tool for ensuring consistent behavior in a system. For example, a database of
anticipated listening services could be compared against an automated scan
of actual listening services so deviations can be addressed. Not all scanning
will result in such clear action, however. Scanning of installed software, for
example, will typically be used to drive prioritization of upgrades based on
the threats a network is exposed to or expects to see.

Effective system scanning requires multiple types of scanners, each of which
inspects the system in a slightly different manner:

Fuzzing (i.e., afl-fuzz)

Injection scanning (i.e., sqlmap)

Network port scanning (i.e., nmap)

Common vulnerability scanning (i.e., nessus)

So, what to do when all this monitoring actually discovers something? The
answer typically depends on the strength of the signal. Traditionally,
suspicious (but not critical) events get dumped into reports and periodically
reviewed. This practice is by far the least effective, as it can lead to report
fatigue, with reports going unnoticed for weeks at a time. Alternatively,
important events can page a human for active investigation. These events
have a strong enough signal to warrant waking someone up. In most cases,
this is the strongest line of defense.

APPLICATIONS MONITORING APPLICATIONS
Application security monitoring is the idea that applications participating in a single cluster or service
can actively monitor the health of their peers, and gain consensus with others on their sanity. This
might manifest itself as TPM quotes, behavioral analysis, and everything in between. By allowing
applications to monitor each other, you gain a high signal-to-noise ratio while at the same time
distributing the responsibility throughout the infrastructure. This approach most effectively guards
against side-channel attacks, or attacks enabled through multitenancy, since these vectors are less
likely to be shared across the entire cluster.

In highly automated environments, however, a third option opens up: active
response. Strong signals that “something is wrong” can trigger automated
actions in the infrastructure. This could mean revoking keys belonging to the
suspicious instance, booting it out of cluster membership, or even signaling
to datacenter management software that the instance should be moved offline
and isolated for forensics.

Of course, as with any high-level automation, one can do a lot of damage
very quickly when utilizing active responses. It is possible to introduce
denial-of-service attacks with such mechanisms, or perhaps more likely, shut
down a service as a result of operator error. When designing active response
systems, it is important to put a number of fail-safes in place. For instance, an
active response that ejects a host from a cluster should not fire if the cluster
size is dangerously low. Being thoughtful about building active response
limitations such as this goes a long way in ensuring the sanity of the active
response process itself.

Secure Software Development Lifecycle
(SDLC)
Integrating security best practices and tools throughout the entire software
development lifecycle is critical in a zero trust environment. By doing so,
organizations can identify and remediate vulnerabilities before they reach
production environments, reducing the risk of security breaches and

promoting a more secure application landscape. Let’s cover the key aspects
of a secure SDLC next.

Requirements and Design
During the initial stages of software development, security requirements
should be defined, and potential risks should be assessed. This involves
considering the application’s architecture, data flows, and potential attack
vectors. Security measures like threat modeling can help identify and address
potential vulnerabilities at the design stage. Incorporating privacy by design
principles also protects sensitive data throughout the application’s lifecycle.

Coding and Implementation
Developers should adhere to secure coding practices, such as input
validation, output encoding, and proper error handling, to minimize the
likelihood of introducing vulnerabilities in the code. Organizations should
establish coding standards and guidelines to ensure consistency across the
development team. Using secure programming languages and frameworks
with built-in security features can reduce the risk of introducing
vulnerabilities.

Static and Dynamic Code Analysis
Implementing static application security testing (SAST) and dynamic
application security testing (DAST) tools can help identify vulnerabilities
and coding flaws during development. SAST analyzes source code for
potential security issues, while DAST tests running applications for
vulnerabilities that may only be apparent during execution. Integrating these
tools with continuous integration and continuous deployment (CI/CD)
pipelines allows for automated and ongoing security assessments.

Peer Reviews and Code Audits

Regular peer reviews and code audits can help identify security issues that
automated tools may have missed. This process encourages knowledge
sharing among the development team, fostering a security-conscious mindset.
In addition to internal reviews, external audits conducted by independent
security experts can provide an unbiased assessment of the application’s
security posture.

Quality Assurance and Testing
Security testing should be an integral part of the quality assurance process,
with test cases designed to evaluate the application’s resilience to various
attack scenarios. Penetration testing, performed by internal or external
security experts, can provide further insight into the application’s security
posture. Automated security tests should be integrated with the CI/CD
pipeline to ensure continuous application security validation.

Deployment and Maintenance
Once the application is deployed, keeping it up to date with the latest
security patches and updates is essential. Monitoring and logging
mechanisms should be implemented to detect potential security incidents,
allowing for timely response and mitigation. In addition, configuration
management tools and processes should be in place to ensure consistent and
secure deployment of applications and updates.

Continuous Improvement
Organizations should learn from security incidents and incorporate the
lessons learned into their SDLC processes. Regularly reviewing and
updating security policies, procedures, and practices ensures that the
organization remains agile and responsive to emerging threats. Conducting
post-mortem analyses of security incidents and sharing the findings with the
development team can lead to better security awareness and improved
practices.

By incorporating these practices, organizations can foster a security-centric
culture and promote trust in their applications.

Protecting Application and Data Privacy
You have learned in previous sections the importance of securing various
stages of the software development lifecycle in the context of zero trust
networks; this section briefly examines the role of confidential computing. It
is a technology that guarantees both code/data integrity and confidentiality
while allowing applications to be deployed and operate, particularly in a
public cloud, as well as in any other hostile environment (think client
devices such as mobile phones).

When You Host Applications in a Public Cloud, How
Can You Trust It?
Isn’t it convenient to lift-and-shift existing applications to the public cloud?
Of course, and if you are reading this, it is likely that you are already using
the public cloud in some shape and form, as it provides comprehensive
DevSecOps, monitoring, scalability, and resiliency. But there is a caveat—
can you trust the cloud operator hosting the application not to tamper with the
code and data? Well, in the context of zero trust, cloud operators cannot be
implicitly trusted. Why? There can be a variety of reasons, ranging from
regulatory (e.g., government-issued subpoenas) to malicious (e.g.,
disgruntled employees, espionage), resulting in data as well as code getting
into the hands of unauthorized resources. While data is typically protected at
rest (using disk-based encryption such as FIPS) and in transit (using TLS)
when security best practices are followed, this still leaves data as well as
code accessible to cloud operators while computation is performed on it
(e.g., while in memory). To mitigate this risk, you need technical assurance
backed by cryptographic proof from the cloud operator that the code and data
cannot be accessed by an unauthorized party (including the cloud operator)
while in use, as well as proof that code operating on the data is never
tampered with. This is an important step toward building confidence while

https://oreil.ly/YBfLH
https://oreil.ly/BdXSK

deploying and running applications on a modern cloud platform—never trust,
always verify.

Confidential computing offers this assurance.

Confidential Computing
The term confidential computing is defined by the Confidential Computing
Consortium (CCC) as “the protection of data in-use by performing
computation in a hardware-based, attested Trusted Execution Environment
(TEE).” A TEE is a secure computing environment that consists of software
and hardware component(s) and ensures the execution of only authorized
applications. Data stored within the TEE is impervious to unauthorized
access or manipulation by external code. The objective of the confidential
computing threat model is to mitigate or minimize the potential for cloud
provider operators and other entities inside the environment to gain
unauthorized access to code and data during execution.

WHAT MAKES CONFIDENTIAL COMPUTING DIFFERENT
FROM OTHERS?

Please note that there are several other privacy-enhancing technologies with varying degrees of
maturity for protecting data while it is in use during computation, such as homomorphic encryption
(HE), secure multiparty computation (SMPC), and zero-knowledge proof (ZKP), etc. The
distinguishing characteristic of confidential computing is its ability to verify that the code operating on
the data has not been tampered with in any way and is precisely as expected. Chapter 12 also covers
privacy-enhancing technologies and provides additional references for interested readers to examine.

Understanding Hardware-Based Root-of-Trust (RoT)
Hardware-based root-of-trust (RoT) is an immutable hardware component,
often a silicon chip or a cluster of chips, that is designed to be exceptionally
tamper-resistant from a wide range of attacks. With RoT, the cryptographic
keys are embedded in the hardware and are inseparable from it; no one can
access them, not even the cloud provider.

https://oreil.ly/c3nCc

The RoT is used within a TEE to enable hardware isolation, memory
protection, encryption, secure storage, and attestation capabilities. This is
essentially the lowest (closest to silicon) level of protection available for
protecting applications, including code and data.

Role of Attestation
Attestation is a vital step in building confidence in hardware and software
components. First, attestation ensures the integrity and dependability of the
TEE hardware, verifying that the TEE is based on the expected hardware
(manufacturer, version, firmware, etc.) and that the memory protection
functions associated with that hardware are enabled. Second, the software
running within the TEE is authentic (version, runtime properties, etc.) and
has not been tampered with.

ATTESTATION IN THE PUBLIC CLOUD?
Most large-scale hardware chip manufacturers provide attestation as a built-in feature that cloud
operators enable so that organizations may use it to achieve a high level of confidence while running
applications in the cloud. For further information, refer to: Intel® Software Guard Extensions remote
attestation, AMD SEV-SNP Attestation, NVIDIA Hopper Confidential Computing Attestation
Verifier, AWS cryptographic attestation, Microsoft Azure Attestation, Google attestation policies, and
IBM Secure Execution attestation.

One thing to keep in mind is that, despite the fact that confidential computing
provides strong protection, it may still have threats (as does any other
technology) that must be evaluated and go through threat modeling. Readers
are encouraged to examine the confidential computing threat model outlined
by the Confidential Computing Consortium for more details on this topic.

Scenario Walkthrough
Let’s run through another scenario walkthrough. The key components are
shown in Figures 7-7 and 7-8 while request analysis is performed next.

https://oreil.ly/fi1sC
https://oreil.ly/biTUe
https://oreil.ly/Pjeo-
https://oreil.ly/4wayN
https://oreil.ly/h3eki
https://oreil.ly/NasIl
https://oreil.ly/QbqvO
https://oreil.ly/G_Wrh

Use Case: Bob Sends Highly Sensitive Data to
Financial Application for Computation
Here is what we know about Bob’s request:

Bob is sending highly sensitive data for computation to the financial
application FinApp.

Bob has encrypted the sensitive data using a public key provided by
FinApp.

Bob is using his work laptop with device ID “ABC,” which is fully
compliant with organization policy.

Bob has used a password for authentication along with SMS as an MFA
method.

Bob is making the request during office hours.

Figure 7-7. Activity logs, user data, and monitoring logs

Here’s what we know about FinApp:

FinApp runs in a trusted execution environment/secure hardware
enclave.

All communications to FinApp are through an encrypted TLS channel.

Continuous monitoring runs attestation checks on a regular basis to
ensure FinApp is running the expected version and has not been
tampered with.

Figure 7-8. Policy engine and trust engine

Request Analysis
1. Bob’s access request (action: compute-score, app-id: FinApp, device-

id: ABC, authentication: FIDO2, location: Dallas, IP:6.7.8.9, datetime:
23-Dec-2023-4:00pm-est-timezone) reaches the enforcement
component.

2. The enforcement component forwards the access request to the policy
engine for approval.

3. The policy engine receives the request and consults with the trust engine
to determine the request’s trust score.

4. The trust engine evaluates the request:

No anomalous behavior is detected based on the user activity logs,
and monitoring logs also show the application properly responding
to attestation requests.

The device is in compliance and had its most recent compliance
check less than 36 hours ago, so add 4 points to the trust score.

Bob has also used FIDO2 as an MFA method, which is phishing
resistant, so add another 8 points to the trust score.

Finally, the trust engine computes the average of trust scores,
which is 6, and returns it to the policy engine.

5. The policy engine receives the trust score of 6 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the
request is made during the permissible office hours.

The second rule does not apply because the access request is made
over TLS.

The third rule does not not apply as the trust score received from
the trust engine was 6, which is higher than 3.

The fourth rule does apply to the current request as the request’s
trust score is greater than 5. The request is set to grant.

The fifth rule does not apply because the FinApp request does not
fail any attestation checks, as monitoring logs show.

The sixth rule does not apply since the request is using a strong,
phishing-resistant MFA mechanism.

The seventh rule does not apply since the request is not for the help
desk support service center portal.

The eighth rule does not apply since it is a default and only
applicable if any other prior rule is not applied. In this case, the
fourth rule was applied to allow the request.

The policy engine sends an allow action to the enforcement
component.

7. The enforcement component receives the result from the policy engine
and grants Bob access to the FinApp.

Summary
This chapter dove into how applications in a zero trust network are secured.
It might seem counterintuitive that a zero trust network needs to be concerned
with application security. After all, the network is untrusted, so untrustworthy
applications existing on the network should be expected. However, while the
network works to detect and identify malicious application activity, that goal
is made impossible if deployed applications are not properly vetted before
being authorized to run. As a result, most of this chapter focused on how to
securely develop, build, and deploy applications in a zero trust network, and
then monitor the running instances to ensure that they stay trustworthy.

The chapter introduced the concept of a trusted application pipeline, which is
the mechanism by which software written by trusted developers is
transformed into built applications that are then deployed into infrastructure.
This pipeline is a highly valuable target for would-be attackers, and so it
deserves special attention. We dug into secure source code-hosting practices,
sound practices for turning source code into trusted artifacts, and securely
selecting and distributing those artifacts to downstream consumers. The
application pipeline can be visualized as a series of immutable
transformations of inputs from earlier in the pipeline, so we explored how to
meet the goals of that pipeline without introducing too much friction in the
process.

Human attention is a scarce but important resource in a secure system. With
the rate of software releases ever increasing, it’s important to mindfully
consider when humans are best introduced in the process. We discussed
where to put humans in the loop to ensure that the pipeline remains secure.

Once applications are built, the process of securing their continued execution
in a production environment shifts a bit. Old, trusted applications may in the
future become untrusted as vulnerabilities are discovered, so we discussed
the importance of an upgrade-only policy when running applications. Secrets
management is often a difficult task for security engineers, where changing
credentials is often very burdensome.

With a smooth credential provisioning process, however, a new opportunity
emerges to frequently rotate credentials, using the credentialing process itself
as a mechanism for ensuring only authorized applications continue to run in a
production environment.

We ended the chapter with a section discussing good application security
hygiene. Learning secure coding practices, deploying applications in isolated
environments, and then monitoring them aggressively is the final aspect of a
trustworthy production environment.

Finally, we ended the chapter with a discussion about secure software
development.

With all the components of a zero trust network explored, the next chapter
focuses on how network communication itself is secured.

Chapter 8. Trusting the Traffic

Authenticating and authorizing network flows is a critical aspect of a zero
trust network. In this chapter, we’re going to discuss how encryption fits into
the picture, how to bootstrap flow trust by way of secure introduction, and
where in your network these security protocols best fit.

Zero trust is not a complete departure from everything we know. Traditional
network filtering still plays a significant role in zero trust networks, though
its application is nontraditional. We’ll explore the role filtering plays in
these networks toward the end of this chapter.

Encryption Versus Authentication
Encryption and authenticity often go hand in hand, yet serve distinctly
separate purposes. Encryption ensures confidentiality—the promise that only
the receiver can read the data you send. Authentication enables a receiver to
validate that the message was sent by the thing it is claiming to be.

Authentication comes with another interesting property. To ensure that a
message is in fact authentic, you must be able to validate the sender and that
the message is unaltered. Referred to as integrity, this is an essential property
of message authentication.

Encryption is possible without authentication, though this is considered a
poor security practice. Without validation of the sender, an attacker is free to
forge messages, possibly replaying previous “good” messages. An attacker
could change the ciphertext, and the receiver would have no way of knowing.
A number of vectors are opened by the omission of authentication, so the
recommendation is pretty much the same across the board: use it.

Additionally, it is important to consider the following aspects when
discussing encryption and authentication in the context of a zero trust
network:

Secure key management

In modern encryption practices, secure key management
plays a crucial role. It involves the secure generation,
storage, and distribution of encryption keys. Techniques
such as the use of hardware security modules (HSMs) or key
management services (KMSs) ensure the protection of
encryption keys from unauthorized access or compromise.

Forward secrecy

Forward secrecy is a critical property of encryption
protocols, such as TLS. It ensures that the compromise of a
single encryption key does not compromise the
confidentiality of past or future communications. Forward
secrecy relies on using ephemeral keys discarded after a
single session, making it harder for attackers to decrypt
previously recorded encrypted traffic.

Multifactor authentication (MFA)

In the context of trusting traffic in a zero trust network,
incorporating multifactor authentication adds a layer of
security, since MFA requires users to provide multiple forms
of authentication, such as a password, a fingerprint scan, or
a security token, before gaining access to resources or
transmitting data. Implementing MFA at the authentication
level strengthens the trust in the network.

Post-quantum cryptography

With the rise of quantum computers, traditional
cryptographic algorithms currently considered secure may
become vulnerable to attacks. Post-quantum cryptography
focuses on developing encryption algorithms that can
withstand attacks from quantum computers. Research and
standardization efforts are underway to identify and deploy

post-quantum cryptographic algorithms that can replace or
augment existing algorithms to ensure long-term security in
the face of quantum computing advancements.

Authenticity Without Encryption?
Message authenticity is a stated requirement of a zero trust network, and it is
not possible to build one without it. But what about encryption?

Encryption brings confidentiality, but it can also be an occasional nuisance.
Troubleshooting becomes harder when you can’t read packet captures
without complicated decryption processes. Intrusion detection becomes
difficult to impossible if the network traffic can’t be inspected. There are, in
fact, some legitimate reasons to avoid encryption.

That said, be absolutely certain that you do not care about data
confidentiality if you choose to not use encryption. While keeping data
unencrypted is convenient for administrators, it is never legitimate if the data
actually requires confidentiality. For instance, consider the scenario shown
in Figure 8-1.

Figure 8-1. Confidentiality within the datacenter is just as important as outside the datacenter

This is an exceedingly common architecture. Note that it only encrypts traffic
in certain areas, leaving the rest open (perhaps for the benefit of system
administrators). Clearly, however, this data requires confidentiality, as it is
encrypted in transit between sites.

This is a direct contradiction of the zero trust architecture, as it creates
privileged zones in the network. Thus, citing good reasons to not encrypt
traffic is a very slippery slope. In practice, systems that truly do not require
confidentiality are rare.

In addition to all of this, authentication is still required. There are few
network protocols that provide strong authentication but not encryption, and

all of the transport protocols we discuss in this book provide authentication
as well as encryption. If you look at it this way, encryption is attained “for
free,” leaving few good reasons to exclude it.

Bootstrapping Trust: The First Packet
The first packet in a flow is oftentimes an onerous one. Depending on the
type of connection, or point in the device lifecycle, this packet can carry with
it very little trust.

We generally know what flows to expect inside the datacenter, but in client-
facing systems, it’s anyone’s guess. These systems must be widely reachable,
which greatly increases risk. We can use protocols like mutually
authenticated TLS to authenticate the device before it is allowed to access
the service; however, the attack surface in this scenario is still considerable,
and the resources are also publicly discoverable.

So how do you allow only trusted connections, silently dropping all others,
without answering a single unauthenticated packet? This is known as the
first-packet problem, and it is mitigated through a method called pre-
authentication (Figure 8-2).

Pre-authentication can be thought of as the authorizing of an authentication
request by setting an expectation for it. It is often accomplished by encrypting
and/or signing a small piece of data and sending it to the resource as a UDP
(User Datagram Protocol) packet. The use of UDP for pre-authentication is
important because UDP packets do not receive a response by default. This
property allows us to “hide,” exposing ourselves only once we passively
receive a packet encrypted with the right key.

Upon the passive receipt of a properly encrypted pre-authentication packet,
we know we can expect the sender to begin authentication with us, and we
can poke granular firewall holes allowing only the sender the ability to speak
with our TLS server. This mode of pre-authentication operation is also
known as single-packet authorization (SPA).

SPA is not a fully suited device authentication protocol. It merely helps to
mitigate the first-packet problem. Without downplaying the importance of the
properties we gain by using pre-authentication, it must not be substituted for
a more robust mutually authenticating protocol like TLS or IKE (Internet Key
Exchange).

Figure 8-2. A client in possession of the pre-authorization key can send a signed packet in order
to set an expectation for a TCP connection. Without it, no acknowledgments are sent.

FireWall KNock OPerator (fwknop)
fwknop is an open source tool that stands for “FireWall KNock OPerator”
and uses SPA for authorization. It is compatible with multiple operating
systems and directly integrates with host firewalls to create temporary
exceptions tightly scoped to specific needs.

Short-Lived Exceptions
When fwknop receives a valid SPA packet, its contents are decrypted and
inspected. The decrypted payload includes the protocol and port numbers
that the sender is requesting access to. fwknop uses this to create firewall
rules permitting traffic from the sender to those particular ports—rules that
are removed after a configurable period of time. The default value is 30
seconds, but in practice, you may only need a few seconds.

As mentioned, the rule that fwknop creates is tightly scoped. It permits only
the sender’s IP address and only the destination ports requested by the

https://oreil.ly/1dgNf

sender. The destination ports that may be requested can be restricted via
policy on a user-by-user basis. Additionally, it is possible for the sender to
specify a source port, restricting the scope of the rule even further.

SPA Payload
The fwknop SPA implementation has seven mandatory fields and three
optional fields included in its payload. Among these are a username, the
access request itself (which port, etc.), a timestamp, and a checksum:

16 bytes of random data

Local username

Local timestamp

fwknop version

SPA message type

Access request

SPA message digest (SHA-256 by default)

Once the client has generated the payload, it is encrypted, an optional HMAC
(hashed message authentication code) is added, and the SPA packet is formed
and transmitted.

Payload Encryption
Two modes of encryption are supported: AES (Advanced Encryption
Standard) and GnuPG (Gnu Privacy Guard). The former being symmetric and
the latter being asymmetric, two options are provided in order to cater to
multiple use cases and preferences.

Personal applications or small installations might prefer AES since it does
not require any GnuPG tooling. AES is also more performant with regard to
data volume and computational overhead. It does have some downsides,

though, practically all of which originate from the fact that it is a symmetric
algorithm.

Symmetric encryption comes with difficult key distribution problems, and
beyond a certain scale, these challenges can grow to be untenable.
Leveraging the GnuPG encryption mode solves most of these problems and is
the recommended mode of operation, despite it being less performant than its
counterpart.

HMAC
fwknop can be configured to add an HMAC to the end of its payload. The
HMAC prevents tampering by guaranteeing that the message is authentic.
This is important because otherwise an attacker could arbitrarily modify the
ciphertext, and the receiver would be forced to process it.

You may have noticed that there is a message digest that is calculated and
stored along with the plain text. This digest helps to mitigate attacks in which
the ciphertext is modified, but it is also less than ideal, as this method
(known as authenticate-then-encrypt, or AtE) is vulnerable to a few niche
classes of attacks. Adding an HMAC to the encrypted payload prevents these
attacks from being effective.

In addition, decryption routines are generally much more complex than
HMAC routines, meaning they are more likely to suffer from a vulnerability.
Applying an HMAC to the ciphertext allows the receiver to perform a
lightweight integrity check, helping to ensure that we are only sending trusted
data to the decryption routines. It is strongly recommended to configure
fwknop to use HMAC.

For more information about networking protocols, please refer to the
Appendix A, “A Brief Introduction to Network Models”.

Where Should Zero Trust Be in the Network
Model?

With a better understanding of network layer models, we can now take a look
at where to best apply zero trust controls in the network stack.

There are two predominant network security suites: TLS and IPsec. TLS (to
which SSL is a predecessor) is the most common of the two. Many
application layer protocols support TLS to secure traffic. IPsec, or Internet
Protocol Security, is an alternative protocol, more commonly used to secure
things like VPNs.

Despite having “transport” in its name, TLS does not live in the transport
layer of the TCP/IP (internet protocol suite) model. It is found in the
application layer (somewhere between layer 5 and 6 in the OSI, or Open
Systems Interconnection, model), and as such is largely an application
concern.

TLS AS AN INFRASTRUCTURE CONCERN
Perimeter networks frequently abstract TLS away from applications, shifting the responsibility from
the application to the infrastructure. In this mode, TLS is “terminated” by a dedicated device at the
perimeter, forwarding the decrypted traffic to a backend service. While this mode of operation is not
possible in a zero trust network, there remain a handful of strategies for deploying TLS as an
infrastructure concern while still conforming to the zero trust model. More on that later.

IPsec, by contrast, is generally considered part of the internet layer in the
TCP/IP model (layer 3 or 4 in the OSI model, depending on interpretation).
Being further down the stack, IPsec is usually implemented in a host’s kernel.
IPsec was developed for the IPv6 specification. It was originally a
requirement for IPv6, but was eventually downgraded to a recommended
status.

With two alternatives to secure network transit, the question becomes, is one
preferred over the other? Zero trust’s goal is secure communication for all
traffic. The best way to accomplish this goal is to build systems that provide
secure communication by default. IPsec, being a low-level service, is well
positioned to provide this service.

Using IPsec, host-to-host communication can be definitively secured. Being
integrated deep in the network stack, IPsec can be configured to only allow
packet transmission once a secure communication channel has been
established. Furthermore, the receiving side can be configured to only
process packets that have been sent securely. In this system, we have
essentially created a “secure virtual wire” between two hosts over which
only secured traffic can flow. This is a huge benefit over traditional security
initiatives that add secure communication one application at a time. Simply
securing communications between two devices is not sufficient to build a
zero trust network. We need to ensure that each individual network flow is
authorized. There are several options for meeting this need:

IPsec can use a unique security association (SA) per application (see
RFC 4301, section 4.4.1.1). Only authorized flows are then allowed to
construct these security policies.

Filtering systems (software firewalls) can be layered on top of IPsec.
We will discuss the role of filtering in zero trust later in this chapter.

Application-level authorization should be used to ensure that
communications are authorized. This could involve standard
authorization techniques, such as access tokens or X.509 certificates,
while delegating strong encryption and authentication responsibilities to
the IPsec stack.

For a truly “belt and suspenders” system, mutually authenticated TLS
could be layered on top of the existing IPsec layer. This defense-in-
depth approach provides two layers of encryption (mTLS, or mutual
TLS, and IPsec), protecting communication should one of them become
compromised, at the expense of complexity and increased overhead.

Client and Server Split
While IPsec has a number of beneficial properties, its lack of popularity
presents real-world obstacles for its use in systems today. The issues one
will see can be broken down into three areas:

https://oreil.ly/f36_w

Network support

Device support

Application support

Network Support Issues
Network support can hamper the use of IPsec in the wild. IPsec introduces
several new protocols, two of which (ESP, or Encapsulating Security
Payload and AH, or Authentication Header) are new IP protocols. While
these protocols are fully supported in simple LANs (local area networks), on
some networks, getting these packets transmitted can be quite a challenge.
This could be due to misconfigured firewalls, NAT (network address
translation) traversal, or routers being purposefully configured to not allow
traffic to flow. For example, Amazon Web Services (AWS), a large public
cloud provider, does not allow ESP or AH traffic to be transmitted on its
networks. Public hotspots like those found at businesses or libraries also
often have spotty support for IPsec traffic. To mitigate these issues, IPsec
includes support for encapsulating traffic in a UDP frame (depicted in
Figure 8-3). This encapsulation allows an inhospitable network to transmit
the traffic, but it adds extra complexity to the system.

Figure 8-3. IPsec supports encapsulating ESP packets in a UDP packet, making it look like
normal UDP traffic

Device Support Issues
Device support can also be a major factor in rolling out an IPsec-protected
network. The IPsec standard is complex, with many configuration options
and cipher suites. Both hosts in the relationship need to agree to a common
protocol and cipher suite before communication can flow. Cipher suites in
particular frequently need to be adjusted as compromises are revealed.
Finding that a stronger cipher suite has not been implemented is a real issue
in IPsec systems. To be fair, TLS needs to handle these same issues, but due
to the nature of having IPsec implemented in the system’s kernel, progress on
newer protocols and cipher suites is naturally slower.

IPsec also requires active configuration of the devices in the relationship. In
a client/server system with varying device capabilities, configuring the client
devices can be rather challenging. Desktop operating systems can usually be

configured to support the less popular protocol. Mobile operating systems,
however, are less likely to fully support IPsec in a way that conforms to the
zero trust model.

Application Support Issues
IPsec places additional requirements on the system configuration versus
typical TLS-based security. A system wanting to make use of IPsec needs to
configure IPsec policy, enable kernel support for the desired cipher suites,
and run an IKE daemon to facilitate the negotiation of IPsec security
associations. When compared to a library-based approach for TLS, this extra
complexity can be daunting. This is doubly so when many applications
already come with built-in TLS support, which seemingly offers a turnkey
solution for network security.

It should be noted that while the library approach seems more attractive at
first glance, in practice it presents quite a bit of hidden complexity.
Applications frequently support the more common server TLS, but neglect to
expose configuration for presenting a client certificate that is required to
create a mutually authenticated TLS connection. Additionally, system
administrators may need to adjust configuration in reaction to recently
exposed vulnerability. With a large set of applications, finding the
application-specific configuration that needs to be adjusted can hamper the
rollout of a critical fix.

The web browser is frequently the common access point into organizational
systems. Its support for modern TLS is generally very good (assuming
organizations stay up to date on the latest browser versions). This common
access point mitigates the issue of configuration, as there is a small set of
target applications that need to be adjusted. On the server side, many
organizations are turning toward a model where network communication is
secured via a local daemon. This approach centralizes configuration in a
single application and allows for a base layer of network security to be
supplied by the system administrator. In a way, it looks very similar to the
IPsec model, but implemented using TLS instead.

Given all the pluses and minuses of the two approaches, a pragmatic solution
seems available to system administrators.

A Pragmatic Approach
For client/server interactions, mutually authenticated TLS seems to be the
most reasonable approach to network security. This approach would
typically involve configuring a browser to present client certificates to
server-side access proxies, which will ensure that the connection is
authenticated and authorized. Of course, this restricts the use of zero trust to
browser-based applications.

For server/server interactions, IPsec seems more approachable. The server
fleet is generally under more controlled configuration, and the network
environment is more well-known. For networks that don’t support IPsec,
UDP encapsulation can be used to avoid network transit issues.

Microsoft Server Isolation
For environments that fully employ Microsoft Windows with Active
Directory, a feature called server isolation is particularly attractive. By
leveraging Windows Firewall, Network Policy, and Group Policy, server
isolation provides a framework through which IPsec configuration can be
automated. Furthermore, server isolation can be tied to Active Directory
security groups, providing fine-grained access control which is backed by
strong IPsec authentication. While complications surrounding IPsec transit
over public networks still exist, server isolation is perhaps the most
pragmatic approach for obtaining zero trust semantics in a Windows-based
environment.

Since the IPv6 standard includes IPsec, the authors hope that it will become a
more viable solution for both types of network communication as network
adoption progresses.

The Protocols

In this section, we will go over mutually authenticated TLS (mTLS) in more
detail, as well as briefly discuss IPsec, as both are crucial protocols.

IKE and IPsec
Internet Key Exchange (IKE) is a protocol that performs the authentication
and key exchange components of IPsec. It is typically implemented as a
daemon and uses a pre-shared key or an X.509 certificate to authenticate a
peer and create a secure session. Inside this secure session, another key
exchange is made. The results of this second key exchange are then used to
set up an IPsec security association, the parameters of which are leveraged
for bulk data transfer. Let’s take a closer look.

IKEV1 VERSUS IKEV2
There are two versions of IKE, and most software suites support both. For all new deployments, it is
strongly recommended to use IKEv2. It is both more flexible and more reliable than its predecessor,
which was overly complicated and less performant. For the purposes of this book, we will be talking
about IKEv2 exclusively.

There is frequent confusion around the relationship between IKE and IPsec.
The reality is that IPsec is not a single protocol; it is a collection of
protocols. IKE is often considered part of the IPsec protocol suite, though its
design makes it feel complimentary, as opposed to a core component. IKE
can be thought of as the control plane of IPsec. It handles session negotiation
and authentication, using the results of the negotiation to configure the
endpoints with session keys and encryption algorithms.

Since the core IPsec protocols are embedded in the IP stack, IPsec
implementations are typically found in the kernel. With key exchange being a
relatively complex mechanism, IKE is implemented as a user space daemon.
The kernel holds state-defining active IPsec security associations, and traffic
selectors defining which packets IPsec policy should be applied to. The IKE
daemon handles everything else, including the negotiation of the IPsec

security association (SA) itself (which is subsequently installed into the
kernel for use).

For a more detailed understanding of IKE and IPSec, please review RFC
6071: IP Security (IPsec) and Internet Key Exchange (IKE) Document
Roadmap.

Mutually Authenticated TLS (mTLS)
Commonly referred to by the name of its predecessor, SSL, TLS is the
protocol most commonly used to secure web traffic. It is a mature and well-
understood protocol, is widely deployed and supported, and is already
trusted with some of the most sensitive tasks, like banking transactions. It is
the “S” in HTTPS.

When TLS is used to secure web sessions, the client validates that the server
certificate is valid, but the server rarely validates the client. In fact, the client
rarely presents a certificate at all! The “mutual” prefix for TLS (mTLS) is
meant to denote a TLS configuration in which client certificate validation is
required (and thus, mutually authenticated). While a lack of client
authentication may be acceptable for services that are being published to the
general public, it is not acceptable for any other use case. Mutual
authentication is a requirement for security protocols conforming to the zero
trust model, and TLS is no exception.

The basics of a TLS handshake are fairly straightforward, as shown in
Figure 8-4. A client initiates the session with a Client-Hello message sent to
the server, which includes a compatibility list for things like cipher suites
and compression methods. The server chooses parameters from the
compatibility list and replies with a Server-Hello defining the selections it
made, followed by the server’s X.509 certificate. It also requests the client’s
certificate at this time.

https://oreil.ly/ireQa

Figure 8-4. A simplified diagram showing a mutually authenticated TLS handshake using RSA
key exchange (RSA stands for Rivest-Shamir-Adleman, based on the surnames of those who

developed the cryptosystem)

The client then generates a secret key and uses the server’s public key to
encrypt it. It sends the server this encrypted secret key, as well as its client
certificate, and a small bit of proof that it is in fact the owner of that
certificate. The secret key generated by the client is ultimately used to derive
several additional keys, including one that acts as a symmetric session key.
So, once the client sends these details off, it has enough information to set up
its side of the encrypted session. It signals the server that it is switching to
session encryption; the server then validates the client and sends a similar
message in return, and the session is fully upgraded.

Separation of duty

For the purposes of a zero trust network, it is a good idea to separate the
encryption duties from the application itself (Figure 8-5). The resource we
are securing in this case is the device, and as such, it makes a lot of sense for
this piece to be independent of the workload itself.

Doing this also alleviates a number of pain points, including zero-day
mitigation, performance penalties, and auditing. For protocols like IPsec, this
separation of duty is part of the design, but this is not the case for TLS.
Historically, applications speak TLS directly, loading and configuring shared
TLS libraries for remote communication. We have seen this pattern’s rough
spots time and time again. Shared libraries become littered throughout the
infrastructure, being consumed by a multitude of projects, all with
independent versions and configurations. Some languages have more flexible
libraries than others, limiting your ability to enforce the latest and greatest.
Above all, it is very difficult to ensure that all these applications are indeed
consuming TLS the right way, and remain up to date with regard to known
vulnerabilities.

Figure 8-5. Traditional applications include TLS libraries and perform those duties themselves.
Using a local TLS daemon instead means better control and consistent performance.

To address the problem, it is useful to move the handling of TLS
configuration to the control plane. Connections to the service are brokered by
the TLS daemon, then locally forwarded to the application. The TLS daemon
is configured with system certificates, trust authorities, and endpoint
information—that’s about it.

In this way, we can ensure that all software receives device authentication
and security with TLS, regardless of its support for it. Additionally, since
zero trust networks whitelist flows, we can ensure that application traffic is
protected by limiting whitelisted flows to known TLS endpoints.

Bulk encryption
All the TLS intricacies and components discussed up to this point apply
primarily to the initial TLS handshake. The TLS handshake serves two
primary purposes: authentication and the creation of session keys.

TLS handshakes are computationally expensive due to the mathematical
operations required to make and validate them. This is a distinct trade-off
between security and performance. While we strongly desire this level of
security, the performance impact is prohibitively expensive if we apply these
operations to all communications.

Asymmetric cryptography is extraordinarily important in the process of
secure introduction and authentication, but its strength can be matched by
symmetric cryptography so long as identity or authentication is not a concern.
Symmetric encryption uses a single secret key instead of a public/private key
pair, and is less computationally expensive than asymmetric cryptography by
orders of magnitude. This is where the concept of a TLS handshake and
session keys comes in.

Some very smart mathematicians and cryptographers realized that we can use
the strong yet expensive operations to securely generate a single secret—one
that can be shared between the parties (Figure 8-6). The key exchange
component of TLS generates this shared key and ensures that both parties
have knowledge of it.

Figure 8-6. TLS handshake generates a symmetric encryption key for bulk transfer. IPsec uses a
similar mechanism.

This shared key is then used as the input for a symmetric encryption
algorithm, which is applied to all session traffic following the handshake.

This methodology ensures that the entire session benefits from the strength of
asymmetric cryptography without inheriting any of the performance
implications associated with asymmetric encryption schemes.

When it comes to choices for bulk encryption algorithms, TLS supports many,
but the recommendation is pretty well aligned across the board: just use
AES. It checks all the desirable boxes, including the fact that it is unpatented,
widely implemented in hardware, and practically universally implemented in
software. It is very performant, heavily vetted/scrutinized, and remains
unbroken to the best of public knowledge. Many people say “AES is good
enough,” and while that might be a tough pill to swallow when it comes to
security protocols, such a statement has never been so close to the truth.

Message authenticity
When communicating securely, message authenticity is an important if not
required property. Encryption provides confidentiality, but without message
authenticity, how do you ensure the integrity of that message? Without an
error during decryption, it is difficult or impossible to distinguish a tampered
message from an authentic one. Some encryption modes (such as AES-GCM;
GCM stands for Galois/Counter Mode) provide message confidentiality and
authenticity guarantees simultaneously. However, these guarantees are only
applicable during bulk encryption; there are several TLS exchanges that are
not protected by the bulk transfer specifications, and the message authenticity
scheme protects those as well.

EXPLICIT AUTHENTICITY SOMETIMES REQUIRED
Since some bulk encryption algorithms provide message integrity assurances, it is not always
necessary to perform explicit authenticity checks on every packet. Instead, TLS will prefer built-in
assurances for bulk transfers and rely on explicit authenticity checks for all packets not associated
with the bulk transfer (for instance, TLS control messages).

As far as choice goes, the options are limited to MD5 (message digest 5) and
the SHA (Secure Hash Algorithm) family of hashes. The former has been

cryptographically broken for quite some time now, leaving the SHA family as
the only reasonable choice for ensuring message integrity under TLS. There
are even concerns when using the weaker SHA variant, SHA-1, as it is now
considered vulnerable in the face of ever-increasing compute power. As
such, it is recommended to choose the strongest SHA hash that can be
reasonably deployed, given hardware and software constraints.

It is additionally recommended to use bulk encryption with built-in
authenticity wherever possible, as it is generally more performant and secure
than relying on a disjointed authenticity mechanism. TLS version 1.3
mandates the use of authenticated encryption.

Mutually authenticated TLS for device authentication
Just like any other protocol used for device authentication, TLS comes with
its ups and downs.

The first is that, due to its position in the network stack, TLS is protocol
dependent. It is most commonly implemented as a TCP-based protocol,
though a UDP-based variant dubbed DTLS (the D stands for Datagram) is
also available. The presence of DTLS highlights the deficiency of the
position of TLS in the stack. With this, TLS suffers diminishing returns when
used to secure IP protocols other than those that it natively supports, like
TCP or UDP.

Another thing to consider is the automation requirement. TLS is commonly
deployed as an infrastructure service in perimeter networks by leveraging
intermediaries, which are typically positioned at the perimeter. This mode of
operation, however, is unsuitable for a zero trust network as long as the
intermediary and the upstream endpoint are separated by a computer
network. In a zero trust network, applications leveraging a TLS-speaking
intermediary must be on the same host as the intermediary itself. As a result,
protecting datacenter zero trust networks with TLS requires additional
automation to configure applications to speak through this layer of external
security. It does not come “for free” like other protocols, such as IPsec.

All of that said, it remains today’s best choice for protecting client-facing
zero trust networks. TLS is very widely supported in both software and
transit (i.e., intermediary networks worldwide), and can be relied upon for
straightforward and trustworthy operation. Most web browsers support
mutually authenticated TLS natively, which means that resources can be
protected using zero trust principles without the immediate need for
specialized client-side software.

For more detailed technical discussion on mTLS, please review RFC 8120:
Mutual Authentication Protocol for HTTP.

Trusting Cloud Traffic: Challenges and
Considerations
The cloud has opened up a world of possibilities for organizations, allowing
businesses to scale quickly and access unlimited resources. However, this
newfound freedom also comes with challenges, particularly around trusting
traffic from the cloud environments. There are several challenges when
transitioning to cloud systems, which include maintaining compliance and
security standards, securing against cyber threats, ensuring network visibility,
navigating the variety of cloud providers available, and keeping costs
reasonable:

Compliance and security

One of the primary concerns of trusting cloud traffic is
ensuring compliance with regulations and security best
practices. Organizations moving their infrastructure to the
cloud must ensure their data is secure and not shared with
unauthorized parties, which can be a challenge in
multitenant public cloud environments, as the data of
multiple organizations is often stored on the same physical
server. Keeping up to date with the latest regulations and
security protocols is crucial to avoid data leakage,
compliance violations, and other severe consequences.

https://oreil.ly/retDV

Cyber threats

Cloud environments are vulnerable to a range of cyber
threats, including malicious actors targeting the platform
itself (e.g., distributed denial-of-service attacks) and threats
that target individual users and their data (e.g., phishing
scams or ransomware). Additionally, cloud providers have
become increasingly attractive targets for state-sponsored
actors due to the large amounts of data stored in these
environments, making it essential to have robust security
measures.

Network visibility

Traditional on-premises solutions are often limited by
physical constraints, whereas cloud networks are often more
flexible and expansive. Organizations must know that they
will lose some visibility into their cloud-based networks and
must be mindful of network monitoring capabilities to
ensure sufficient visibility into their systems.

Diversity of cloud providers

There are a variety of cloud providers out there, each with
its unique offerings and security protocols. Understanding
the differences among cloud providers is important because
it allows organizations to make informed decisions about
which ones to trust. Different providers provide different
levels of security and services, and understanding these
differences is key to making the right decision for an
organization’s specific needs. Switching between providers
can be expensive and time-consuming, so choosing the right
provider from the start is important.

Cost

Cost is often a significant factor as organizations must be
willing to invest in the appropriate security controls and
monitoring tools to ensure data security. Switching between
providers can also be an expensive and time-consuming
process. Those opting for a multi-cloud or hybrid cloud
solution must be aware of the additional costs of managing
multiple providers, considering the complexity of managing
a multi-cloud or hybrid environment and the potential for
increased latency due to data traveling across different
regions and providers.

Despite these challenges, organizations can still take various measures to
ensure the trustworthiness of their traffic, both in the cloud and otherwise.
These can include, but are not limited to, the following:

Ensuring that compliance and security standards are being adhered to

Monitoring cloud-based networks for suspicious activity, maintaining
network visibility, and ensuring that data is encrypted at rest and in
transit

Using the latest security protocols, such as mutual TLS (mTLS)

Using multifactor authentication (MFA) for added security

Conducting regular vulnerability scans and penetration tests

The use of intrusion detection/prevention systems (IDS/IPS); training
staff on best security practices

Implementing access control policies

Regularly patching and updating systems

Monitoring for unauthorized cloud access

Implementing a security incident management plan

The zero trust network paradigm is especially useful for determining the
trustworthiness of traffic originating from cloud environments. By leveraging
mutual authentication, access control, logging, and monitoring of all
inbound/outbound traffic, organizations can ensure that only verified
endpoints are sending and receiving data across systems. In addition,
encryption techniques such as TLS and IPsec can protect data integrity as it
traverses external networks, further helping to ensure a secure transport
medium.

Cloud Access Security Brokers (CASBs) and
Identity Federation
Cloud access security brokers (CASBs) provide an additional layer of
security when accessing cloud resources. CASBs are usually deployed as a
cloud-based proxy between the organization’s network and the provider,
providing visibility and monitoring of all traffic transiting to and from the
cloud. Some of the capabilities of a cloud access security broker include, but
are not limited to, the following:

Data loss prevention (DLP)

Preventing data leakage via the cloud by detecting and
blocking sensitive information

Threat detection and remediation

Monitoring for malicious activity such as malware,
ransomware, phishing attacks, etc., and taking action to
prevent the threat from spreading

Encryption and data integrity

Ensuring that internal data is encrypted in transit and at rest,
and that data integrity is maintained

Enforcing authentication policies

Such as multifactor authentication (MFA) and role-based
access control (RBAC), making it harder for attackers to gain
unauthorized access to an organization’s resources

In addition to the discussed capabilities, CASBs can also apply and maintain
network security policies like access control lists (ACLs) and network
segmentation. They also offer monitoring and logging functions that enable
organizations to detect suspicious or potentially harmful activity.

Identity federation is yet another key component of establishing trust for
cloud traffic. Federated identity services like SAML and OAuth are
important tools for establishing trust, as they allow organizations to establish
single sign-on (SSO) capabilities across multiple cloud applications.

By limiting resources to verified users, the risk of unauthorized access can be
significantly reduced.

Filtering
Filtering is the process by which packets are admitted or rejected by systems
on a network. When most people think of filtering, they typically envision a
firewall, a service or device that sits between the network and application to
filter traffic going to or coming from that device. Firewalls do provide
filtering, but they can provide other services like network address translation
(NAT), traffic shaping, and VPN tunnel services. Filtering can be provided
by other systems not traditionally considered, like routers or managed
switches. It’s important to remember that filtering is a simple service that can
be applied at many points in a networked system.

Filtering can be quite frustrating for users without a security mindset since it
blocks desired network communication. Wouldn’t it be better to get rid of
that nuisance and assume the user knows what they want? Unfortunately,
well-meaning users can trivially expose services that on further inspection
they would rather not expose. During the early days of always-on internet
connections, users’ computers routinely accidentally exposed file sharing and

chat services on the public internet. Filtering provides a type of checks and
balances for network communication, forcing users to consider whether a
particular connection should really cross a sensitive boundary.

Many of the zero trust concepts so far have focused on advanced encryption
and authentication systems. This is because these aspects of network security
are not nearly as pervasive in network designs as they should be. However,
we should not downplay the importance of network filtering. It is still a
critical component of a zero trust architecture, and so we will explore it in
three parts:

Host filtering

Filtering traffic at the host

Bookended filtering

Filtering traffic by a peer host in the network

Intermediary filtering

Filtering traffic by devices in between two hosts

Host Filtering
Host filtering deputizes a network endpoint to be an active participant in its
own security. The goal is to ensure that every host is configured to filter its
own network traffic. This is different from traditional network design, where
filtering is delegated to a centralized system away from the host.

Centralized filtering is most often implemented using a hardware firewall.
These firewalls make use of application-specific integrated circuits (ASICs)
to efficiently process packets flowing through the device. Since the device is
often a shared resource for many backend systems, these ASICs are critical
for it to accomplish the task of filtering the aggregate traffic of all those
systems. Using ASICs brings raw performance at the expense of flexibility.

Software firewalls, like those found in modern operating systems, are much
more flexible than their hardware counterparts. They offer a rich set of
services like defining policies based on the time of day and arbitrary offset
values. Many of these software firewalls can be further extended with new
modules to offer additional services. Unlike the early days of the internet, all
modern desktop and server operating systems now offer some form of
network filtering via a host-based firewall:

Linux

IPtables

BSD systems

Berkeley Packet Filter (BPF)

macOS

Application firewall and additional host firewalls available
via the command line

Windows

Windows Firewall service

Perhaps surprisingly, neither iOS nor Android ships with a host-based
firewall. Apple’s iOS security guide, Apple Platform Security, notes that it
considers a firewall unnecessary since the attack surface area is reduced on
iOS “by limiting listening ports and removing unnecessary network utilities
such as telnet, shells, or a web server.” Google does not publish an official
security guide. Android, perhaps owing to its ability to run non-Play Store-
approved software, does have third-party firewalls available to install if a
user chooses to do so.

Zero trust systems assume the network is hostile. As a result, they filter
network traffic at every point possible, often using on-host firewalls. Adding
an on-host firewall reduces the attack surface of a host by filtering out
undesirable network traffic. While software-based firewalls don’t have the

same throughput capabilities as hardware-based systems, the fact that the
filtering is distributed across the system (and therefore sees only a portion of
the aggregate traffic) often results in little performance degradation in
practice.

Using on-host filtering is simple to get started with. Configuration
management systems have very good support for managing on-host firewalls.
When writing the logic to install services, it’s easiest to capture the allowed
connections right alongside their installation and configuration routines.
Filtering in a remote system, conversely, is more difficult since the
exceptions are separated from the application that needs them.

On-host firewalls also offer opportunities for novel uses of programmable
filtering. Single-packet authorization (SPA), which we discussed earlier in
this chapter, is a great example of this idea. SPA programmatically manages
the on-host firewall to reduce the attack surface of a service on a host. This
is advantageous because on occasion, carefully crafted malicious packets can
be constructed to exploit a weakness in network services. For example, a
service might require authentication and authorization before processing a
request, but the authentication logic could have a buffer overflow error
which an attacker can use to implement a remote code execution
vulnerability. By introducing a filtering layer, we can hide the more complex
service interface behind a simpler system that manages firewall rules.

There are, of course, issues when using on-host firewalls exclusively for
network filtering. One such issue is the chance for a co-located firewall to be
rendered meaningless should a host become compromised. An attacker who
is able to gain access to a host and elevate their privilege could remove the
on-host firewall or adjust its configuration. Needless to say, this is a big
deal, as it removes a layer of defense in the system. This concern is why
filtering has traditionally been handled by a separate device, away from
potentially risky hosts.

This approach highlights the benefits of isolation in security design, which
on-host filtering could benefit from. As the industry moves toward isolation
techniques like virtualization and containerization, it becomes clear that these

technologies present an opportunity to further isolate on-host filtering.
Without these technologies, the only form of isolation that is available is
local user privilege. On a Unix-based system, for example, only the root user
is able to make adjustments to the firewall configuration. In a virtualized
system, however, one could implement filtering outside the virtual machine,
which provides strong guarantees against attacks on the filtering system. In
fact, this is how Amazon’s security group feature is implemented, as shown
in Figure 8-7.

Figure 8-7. Amazon EC2 security groups move filtering outside the virtual machine to improve
isolation

Another issue with on-host filtering is the cost associated with pushing
filtering deep into the network. Imagine a scenario where a large percentage
of traffic is filtered away by on-host filtering. By applying filtering nearest to
the destination system, the network incurs extra cost to transmit those
packets, only for them to be ultimately thrown away. This situation also
raises the possibility of a denial-of-service attack forcing internal network

infrastructure to route large volumes of useless traffic, as well as
overwhelming the comparatively weaker software firewalls. For this reason,
while on-host firewalls are the best place to start thinking about filtering,
they present a risk if they are the only place filtering occurs. We will discuss
ways to push filtering out into the network in “Intermediary Filtering”.

Bookended Filtering
Bookended filtering is the act of applying policy not just on the receipt of a
packet, but while sending them too. This mode of filtering is not commonly
found in traditional networks. It brings some interesting advantages to
network design, which we will now explore.

Egress (the opposite of ingress) is a term used to describe network traffic
that is leaving a host. This type of filtering is commonly used to manage
communication from a private network out to public networks, but it is rarely
used within a private network. There are a few reasons this is the case:

Ingress filtering is easier to reason about, since listening services can
be enumerated when building firewall rules. Egress filtering requires
more bookkeeping to capture how hosts intend to communicate.

Ingress filtering is generally considered good enough to stop
undesirable communication in the network.

Egress filtering requires knowledge of every expected flow, something
not usually found in traditional networks.

Bookended filtering uses egress filtering within the zero trust network to
further harden the system. We can see how this hardening is beneficial with
the example shown in Figure 8-8. Let’s consider a system where a database
server has ingress filter rules set up to allow access from application
servers. A well-meaning administrator is investigating some network
connectivity issues. In the process of their investigation, the admin loosens
the database’s ingress filtering to rule out the possibility that it was causing
the issue. Crucially, this administrator forgets to revert the change after
disproving that theory. This error removes a layer of defense in the system

for some time. Worse yet, discovering this lost defense can be difficult
because the expected communication (from the app servers to the database
server) continues to work.

Figure 8-8. Bookended filtering can provide protection in unexpected circumstances

In this scenario, a network that has pervasive bookended filtering is
protected even when this critical misconfiguration is in the system. In a way,
it’s similar to herd immunity—the collective benefit that a community
provides to unvaccinated members when the vast majority of members are
vaccinated against a disease. Instead of preventing illness, bookended
filtering protects misconfigured systems from the potential impact of that
misconfiguration.

Building bookended filtering into a system isn’t as hard as it might seem,
given the right conditions. Communication flows need to be captured in a
way that can be consumed programmatically. The best way to capture these
flows is by defining fine-grained ingress rules. These ingress rules should
allow access to a service based on each client’s server role instead of
broadly opening access to a service. By capturing this detail, we have

constructed a dependency graph from which egress rules can be calculated
and applied throughout the system.

Like we discussed in host filtering, egress filtering is best applied when it is
isolated from the applications running within the system. The same insights
apply here: it’s preferable to implement filtering on the other side of a
virtualized or containerized environment to have the most robust filtering
mechanisms. Looking beyond the filtering implementation, it’s important to
consider the isolation of the data used to build egress filtering rules. It might
seem attractive to calculate that data from a dynamic data source such as a
service discovery system, but bookended filtering is most effective when the
flow database is isolated from the running system. Instead, use a slowly
changing database, especially one that requires a human to review changes.

PROJECT CALICO
Project Calico is a virtual network system for dynamically scheduled
workloads. A workload is a generic term that applies to any application
that needs to be run in a datacenter. This application could be inside a
container or a virtual machine. Calico takes the lessons learned in
operating the internet and brings them into the datacenter to create a
simpler network that can scale efficiently as the size of one’s network
grows.

Calico is not a full zero trust solution, but it does echo some of the ideas
of zero trust networks. Calico distributes filtering throughout the
network, which is enforced on the host machines. These hosts are
dynamically reconfigured based on changes in a database that describes
the entire network. This design looks very similar to the host filtering we
discussed earlier.

Calico also includes the bookended filtering concepts we discussed.
This means that hosts on both ends of a connection are filtering traffic
based on their knowledge of which connections should be allowed. This
double enforcement of network communication is seen as a secondary
defense in the network fabric.

Intermediary Filtering
Intermediary filtering is the idea that devices other than the sender or
receiver can and should participate in filtering traffic in a zero trust network.
This, at minimum, means perimeter filtering can play a role in a zero trust
network, and at maximum, intermediary devices within the network’s fabric
do.

As we discussed in “Host Filtering”, filtering traffic only at the destination
incurs an extra cost on the network when the ratio of undesirable traffic is
very high. High-throughput filtered traffic will most often originate from
internet ingress traffic. Ideally, we want to filter traffic as soon as possible to

https://oreil.ly/6zYbw
https://oreil.ly/CBxR1

reduce the impact and the cost of filtering. For this application, filtering at
the perimeter systems that sit between the zero trust network and the internet
is ideal. These devices typically need to be hardware-based to efficiently
filter the packets coming into the system. Perimeter filters can also be an
important check and balance in a zero trust network. The perimeter filters
should be a combination of global rules and coarse-grained host policy. By
keeping global rules separate from host policy, invariants about the external
network configuration are defined.

Exceptions to this policy should be traceable back to host infrastructure that
relies on those exceptions, and the actions taken to instantiate them. The best
implementation derives these exceptions from the host policies themselves.
By tying the host policy to the exception policy, the system will be more
consistent as hosts come and go from the network. These exceptions,
however, must be verified to be as narrowly scoped as possible. A review
process should be exercised for all policy changes in order to guard against
overly broad exceptions, which can compromise the system’s security.

UPNP CONSIDERED HARMFUL
Deriving perimeter policies from host policies should not be conflated with UPnP (Universal Plug and
Play), a technology used to reconfigure consumer firewalls. UPnP is rightly criticized because any
application on the network can reconfigure the perimeter. In the zero trust model, there is a chain of
trust between the host policies and the exceptions that are created at the perimeter.

It might seem odd that we’re discussing perimeter filtering in such a positive
light, given the failings of the perimeter model. The key detail to understand
here is that zero trust networks don’t throw out all perimeter concepts.
Instead, they encourage administrators to start at the host and work their way
outward. Perimeter devices eventually play a role in this way, with denial-
of-service mitigation being by far the most notable application.

An exciting idea in zero trust networks is to use the host policy database to
dynamically program the network fabric itself. This would result in a
software-defined network (SDN) that does not blindly route packets to the

destination, but actively manages switching and routing policy based on
which flows are expected and allowed. This results in a couple of benefits:

Potentially malicious traffic is kept away from hosts, reducing the attack
surface.

Software firewalls on the hosts are augmented by the network itself,
adding additional layers of defense in the network.

Like the perimeter filtering discussed earlier, filtering in the network fabric
should be seen as an enhancement to the base layer of host-based filtering. It
must not act as a replacement for it.

FORWARDING AND ROUTING AUTHORIZATION
As we discuss filtering, there is a theme that arises—zero trust networks
leverage relatively slowly changing details of the network to distribute
enforcement, resulting in a network that is more secure. This observation
opens up an interesting opportunity: can we propagate enforcement into
the network infrastructure, effectively elevating those pipes from a
simple packet transmitting system to a smart network fabric? Imagine an
SDN controller that only installs flow instructions based on the result of
a strong authentication and authorization process. A client wishing to
access a network resource can signal the control plane, providing the
network access request along with the appropriate credentials. After
successful request authorization, the network is installed and available,
but only for the specific flow that was authorized.

Scenario Walkthrough
In this scenario, Bob is using his browser to access email while connected to
a public anonymous network (e.g., Tor or I2P). In this situation, it is critical
to ensure that Bob remains productive without reducing the security posture.
This is accomplished by granting Bob read-only access to the email while
closely monitoring his activities. Again, an essential element in zero trust is

https://oreil.ly/5db9m
https://oreil.ly/LrnE6

to remember that policies like these are not static, but rather dynamic, and
should be reviewed on a frequent basis. For example, a report may be
generated specifically to assess how many users are actually using public
anonymous networks and their access patterns across applications. This will
aid in the continuous improvement of policy.

Take a look at Figure 8-9, which shows control plane components: user data,
activity logs, and monitoring logs. Details of the trust engine and policy
engine are shown in Figure 8-10.

Figure 8-9. User data, activity logs, and monitoring logs

Figure 8-10. Policy engine and trust engine rules

Use Case: Bob Requests Access to an Email Service
Over an Anonymous Proxy Network
Here is what we know about Bob’s request:

Bob is sending a request to access an email service via a web
application while using an anonymous proxy network while at the
airport.

Bob’s request is using the latest version of TLS while accessing email
using a browser.

Bob is using his work laptop with device ID “ABC,” which is fully
compliant with organization policy.

Bob has used a strong phishing-resistant MFA method for
authentication.

Bob is making the request during office hours.

Here’s what we know about the email service:

Email is hosted by a public cloud vendor and offered as a SaaS service.

All access to email requires an encrypted TLS channel.

Continuous monitoring runs health probes on a regular basis from
various regions globally to ensure the email service is online.

Request Analysis
1. Bob’s access request (action: access-email, app-id: Browser, device-

id: ABC, authentication: FIDO2, location: Dallas, IP:6.7.8.9, datetime:
23-Dec-2023-4:00pm-est-timezone) reaches the enforcement
component.

2. The enforcement component forwards the access request to the policy
engine for approval.

3. The policy engine receives the request and consults with the trust engine
to determine the request’s trust score.

4. The trust engine evaluates the request:

No anomalous behavior is detected based on the user activity logs,
and monitoring logs also show the application responding to
attestation requests properly.

The device is in compliance and had its most recent compliance
check less than 36 hours ago, so 4 points are added to the trust
score.

Bob has also used FIDO2 as an MFA method, which is phishing
resistant, so another 8 points are added to the trust score.

Finally, the trust engine computes the average of the trust scores,
which is 6, and returns it to the policy engine.

5. The policy engine receives the trust score of 6 from the trust engine.

6. For authorization, the policy engine compares the request to all policy
rules:

This first rule results in a grant (or allow) action because the
request is made during the permissible office hours.

The second rule does not apply because the access request is made
over TLS.

The third rule does not apply, as the trust score received from the
trust engine was 6, which is higher than 3

The fourth rule does apply to the current request as the request is
for email service and is made over a public anonymous proxy
network. Only read-only access to email is allowed.

The fifth rule does not apply since the request is using a strong
phishing-resistant MFA mechanism.

The sixth rule does not apply since the request is not for the help
desk support service center portal.

The seventh rule does not apply since it is a default and only
applicable if any other prior rule is not applied. In this case, the
fifth rule was applied to allow the request.

7. The policy engine sends an allow action request to the enforcement
component.

8. The enforcement component receives the result from the policy engine
and grants read-only access to the email service to Bob.

Summary
This chapter focused on how traffic gains trust in a zero trust network. We
teased apart the distinctions between encryption and authenticity—two
concepts that are related but distinct. Zero trust networks require authenticity
in communication, and most networks also gain value in having their traffic
encrypted.

We explored the first-packet problem in network communications. Modern
authentication systems are fairly complicated, which results in a large
surface area for attacks. We talked about hiding those services behind a

single-packet authorization system, which is a relatively simple service that
can be used to hide a more complex authentication system like TLS.

We then talked about two protocols for encryption and authentication of
network traffic: TLS and IPsec. We provided guidance that mutually
authenticated TLS (mTLS) is best suited for client/server interactions or in
heterogeneous environments, while IPsec seems well suited inside the
datacenter (particularly so when network address translation is not present).

We also covered cloud traffic and the fact that cloud-based services present
additional challenges to determining the trustworthiness of traffic. We talked
about some of the challenges, leveraging authentication and authorization
mechanisms for cloud-based flows, and cloud-native security tools to apply
access control policies and enforce the principle of least privilege.

Zero trust networks still need packet-filtering capabilities, which they deploy
throughout the network. We described three types of filtering that can be
deployed in such a network: host, bookended, and intermediary filtering.
Each type of filtering adds additional robustness to the network and can be
deployed in the network using system automation and a shared database of
expected network communication.

Finally, the chapter concludes with a user scenario walkthrough in which
traffic is routed through a public anonymous proxy, and this affects how users
access the email system. This is a real-world scenario in which a balance
must be struck between productivity and maintaining a secure posture.

The next chapter takes all the concepts we have learned thus far and lays out
a plan for creating your own zero trust network.

Chapter 9. Realizing a Zero
Trust Network

This chapter will help readers develop a strategy for taking the knowledge in
previous chapters and applying it to their system. Zero trust networks are
very likely to be built around existing systems, so this chapter will focus on
how to make that transition successfully.

It’s important to remember that zero trust is not a product or even a single
service that can be bolted onto the network. It is a set of architectural
principles that are applied based on the needs and constraints of the network.
Therefore, this chapter cannot provide a checklist of changes to be made, but
rather a framework for how to approach realizing a zero trust network in
your own system.

The First Steps Toward a Zero Trust Network:
Understanding Your Current Network
Thoroughly assessing your network infrastructure is the bedrock of a robust
zero trust strategy. Begin by mapping out all network elements, including
devices, software, and data flows, to identify security gaps and areas ripe for
enhancement. This comprehensive view of your network’s current state is
pivotal, providing insights into potential vulnerabilities and informing where
and how to apply zero trust principles effectively. This foundational
understanding is necessary for any security measures to be aligned with your
organization’s specific needs and vulnerabilities that could potentially lead
to ineffective defenses and susceptibility to security breaches. The end goal
is a clear blueprint of your existing network that will guide the seamless
integration of zero trust in your environment.

Choosing Scope
Before setting out to build a zero trust network, it is important to choose the
proper scope for the effort. A very mature zero trust network will have many
interacting systems. For a large organization, constructing these systems
might be feasible, but for smaller organizations, the number and complexity
of those systems may make a zero trust network seem out of reach.

It’s important to remember that the zero trust architecture is an ideal to work
toward instead of a list of requirements that must be met completely from day
one. This is no different from perimeter-based networks. Less mature
networks may initially choose a simple network design to reduce the
complexity of administration. As the network matures and the risk of a breach
increases, the network will need to be redesigned to further isolate systems.

While the zero trust network design is an ideal, not all features of the design
have equal value. Determining which components are required and which are
nice to have will go a long way in ensuring the success of a zero trust
implementation.

Assessment and Planning
Building a zero trust network starts with a strong foundation, so once you
understand scope, the next step will be the assessment and planning phase.
Think of this phase as laying the groundwork for the principles of “never
trust, always verify” to thrive. During this phase, the current network setup is
evaluated, assets are pinpointed, and a gap analysis is conducted to
determine the steps needed to transition to a zero trust architecture.

Network assessments help evaluate the existing network structure and
identify strengths, weaknesses, and security measures aligned with zero trust
principles. Next comes asset identification and gap analysis. Asset
identification involves enumerating and categorizing all assets in the
network, such as devices, applications, data repositories, and cloud
resources. Finally, the gap analysis reveals the differences between the
current network structure and a zero trust architecture, highlighting the
necessary technological and policy changes.

EMBRACING THE ESSENCE OF ZERO TRUST
Embracing the essence of zero trust requires a fundamental paradigm
shift in your approach to security. It’s about understanding that zero trust
is not a tangible product you can plug into your network but a
comprehensive mindset that permeates every aspect of your
organization’s security posture.

Start by ingraining the “never trust, always verify” principle at all levels,
from policy creation to daily operations. Educate stakeholders about the
importance of continuous verification and least-privilege access. The
goal is to foster a proactive security culture where trust is earned, not
assumed, leading to a significantly enhanced defense against evolving
cyber threats.

Remember, zero trust is a mindset, not a product. The outcome should be
a shift in organizational culture toward constant vigilance and security
mindfulness.

Requirements: What Is Actually Required?
Limiting the scope of a zero trust network necessarily requires prioritizing
the set of properties that are presented earlier in this book. This RFC-style
prioritization list is the authors’ opinion on how that work should be
prioritized:

All network flows MUST undergo authentication before processing.

All network flows SHOULD be encrypted before transmission.

Authentication and encryption MUST be performed by the endpoints in
the network.

System access SHOULD be enforced by enumerating all network flows.

The strongest authentication and encryption suites SHOULD be used
within the network.

Authentication SHOULD NOT rely on public PKI providers. Private
PKI systems should be used instead.

Devices SHOULD be regularly scanned, patched, and rotated.

RFC-STYLE PRIORITIZED LISTS
Request for Comments (RFC) documents are the lingua franca of
proposed changes to internet infrastructure. In these documents, language
and structure are clearly defined to allow readers to more quickly
understand the proposed changes. One aspect of that language that is very
useful in prioritization discussions is the standard terms defined in RFC
2119. This RFC defines a set of terms (MUST/MUST NOT,
SHOULD/SHOULD NOT, MAY/MAY NOT) which, when used, carry
greater weight than their normal usage in common literature.

This book’s prioritized list uses these terms with a similar intention to
their definitions in RFC 2119. While architectural characteristics don’t
have quite the same requirements as protocol designs, the use of these
standard terms is intended to echo the usage presented in that RFC. For
completeness, here are the intended definitions of these standard terms
when used in this book:

MUST

This term is used for a requirement that is required for
the implemented system to be considered compatible
with the zero trust design.

MUST NOT

This is the opposite of MUST. A system intending to
implement the zero trust design is required to not have
this characteristic.

SHOULD

This term denotes an architectural characteristic that is
desired in a zero trust network, but given cost constraints
can be deprioritized. When deprioritizing this feature,
system administrators should be aware that they are
trading the security of their systems for reduced cost in

https://oreil.ly/tOcit
https://oreil.ly/tOcit

implementing them. When at all possible, system
administrators should avoid compromising on these
characteristics because the benefit of not compromising
on them is considered worth the up-front cost of their
implementation.

SHOULD NOT

This is the opposite of SHOULD.

MAY

This term is used for architectural characteristics of a
zero trust network that bring value, but are considered
nice to have. System administrators should plan on
implementing these aspects once they have built a
system that satisfies the MUST and SHOULD definitions. It
is important to note that these additional features bring
additional value to the network by hardening it, so they
should not be considered a net loss.

With this prioritized list of design requirements for building a zero trust
network, let’s dig into why particular requirements are categorized the way
they are.

All Network Flows MUST Undergo Authentication
Before Processing
In a zero trust network, all packets received by the system are immediately
suspicious. As such, they must be rigorously inspected before allowing the
data within them to be processed. Strong authentication is the primary
mechanism by which we accomplish this.

Authentication is absolutely required in order to gain confidence about the
provenance of network data. It is, perhaps, the single most important

component of a zero trust network. Without it we have nothing, and are
forced to place trust in the network.

All network flows SHOULD be encrypted before transmission
A key lesson of this book is that a network link cannot be trusted to reliably
convey data or signals from one system to another. The physical accessibility
of a network link to unsafe actors makes it trivial for that network to be
compromised. Moreover, even in a physically secure network, bad actors
can digitally infiltrate a system and passively probe the network for valuable
data.

By encrypting data on a device before transmitting it on the network, we
reduce the attack surface of that communication to the trustworthiness of the
device itself, namely application and physical device security.

Authentication and encryption MUST be performed by the
application-layer endpoints
Since zero trust networks recognize the threat that trusting network links
poses to the security of a system, it is important that secure communications
be established between application-layer endpoints. Adding middleware
components that handle these responsibilities (like VPN concentrators or
TLS-terminating load balancers) can leave upstream network
communications exposed to physical and virtual threats. As a result, a system
that claims to be zero trust is required to implement encryption and
authentication at every application-layer endpoint on the network.

System access SHOULD be enforced by enumerating all
network flows
Zero trust networks depend on data that defines the expected characteristics
of the network. Therefore, defining every expected network flow is critical
to safeguarding the network.

We should be careful to note that enumerating flows does not require onerous
change management controls to provide value. A simple process for defining
expected flows brings enormous value in terms of network enforcement and

change auditing. Without the list of expected network flows, zero trust
systems are unable to highlight unexpected communications that need
attention from administrators or should be denied.

It is the strongly held opinion of the authors that deferring the effort to
enumerate flows will ultimately result in a task list that is considered
infeasible. The authors feel that the best way to keep this database of
expected flows up to date is to distribute the responsibility of defining those
flows throughout the organization. When distributing this responsibility,
organizations should take caution to educate teams on best practices for
change management to guard against internal threats to the system. One such
threat is when a single person is allowed to update the flow database without
any oversight. A simple review system can mitigate this threat.

FLOW DATA AS THE SOURCE OF TRUTH
Building a database of expected flows is best accomplished by making the flow database the data
source for allowing that access. By setting up this dependency (and disallowing external
modification), the flow database will be consistent with the actual allowed access.

When capturing flows, following these rules will improve the quality of the data:

Capture the intended use of a flow along with the policy details (e.g., load balancer access—
from load balancing hosts to web application).

Prefer narrowly defined flows over broad access.

The strongest authentication and encryption suites available
SHOULD be used within the network
Zero trust networks assume a hostile network environment, so strong
authentication and encryption suites are an important component in the
security of a zero trust network. Which suites offer strong security,
unfortunately, changes, so this book cannot offer specific choices that will
stand the test of time. Readers should refer to security standards like the
NIST encryption guidelines to pick strong cipher suites.

System administrators should always aim for the strongest suites possible,
but device and application capabilities might limit the types of suites that are
available. In these cases, administrators should be aware that by reducing the
strength of these suites, security is being compromised in their network.

Authentication SHOULD NOT rely on public PKI providers—
private PKI systems should be used instead
Public PKI systems provide trust assurances to unmanaged endpoints in a
secure communication. A certificate authority (CA) signs certificates used in
establishing secure communications. The endpoint receiving that signed
certificate is able to verify its authenticity by comparing the signed material
against the list of trusted certificate authorities already present on the system.
By seeding systems with a list of trusted public certificate authorities,
endpoints can establish secure communication channels with systems they
have not previously communicated with.

Given the benefit that the public PKI system provides to build secure
communication channels, why do zero trust networks prefer private PKI
systems? The reason, perhaps unsurprisingly given zero trust’s focus on
managing trust, is that trusting a third party places the system at increased
risk. There are several risks that the public PKI system brings to a zero trust
network.

One concern is the number of public CAs that are considered trusted. As
internet traffic has grown, the number of trusted public CAs has grown with
it. Each one of those trusted CAs has the ability to sign a fraudulent
certificate that incorrectly asserts the trustworthiness of a malicious system.
Certificate pinning can help with this risk by giving an endpoint the
knowledge of which certificate to expect for a given endpoint, but certificate
pinning requires that the endpoint have prior knowledge of the expected
certificate, which presents a new challenge.

Using a public CA also presents another threat. State actors have become
more aggressive in using judicial powers to force organizations to act against
the trust guarantees that they provide to their customers. These requests have
increasingly used laws that prohibit involved parties from disclosing their

actions. Given this aggressive stance, allowing state actors into the trust
mechanisms of a zero trust network should give system administrators pause.

Based on these concerns, zero trust networks should prefer privately held
PKI systems. Endpoints should be configured to only allow certificates
signed by the private PKI system. We discussed PKI in greater detail in
Chapter 2.

Devices SHOULD be regularly scanned, patched, and rotated
We learned in Chapter 5 that the security of devices is critical for building a
zero trust network. Administrators need to build with the assumption that
trusted devices on the network are compromised, and therefore build
defenses into device management to mitigate this threat.

To that end, devices should be regularly scanned to capture the software
that’s running or installed on the device at a given point in time. Scanning can
be used to discover and prevent known malicious software from running on
the device, but administrators should operate under the assumption that
malware prevention software (e.g., antivirus software) will always be
imperfect. Rather than focusing all energy on stopping malicious software
from running, administrators should focus on building forensics capabilities
so they can analyze the impact of an inevitable malware attack.

Keeping devices fresh is also very important. System administrators should
have a plan for regularly installing the latest security patches. Additionally, a
regular device rotation policy will help ensure that devices don’t accrue
cruft, which can compromise the security of the system.

PREFER REIMAGING OVER LONG-TERM SCANNING AND
PATCHING

Device trustworthiness degrades over time due to the increased risk that a device could have been
compromised. Regularly reimaging devices, while disruptive, ensures that the trust in the fleet
remains high. Aim to reimage servers once a quarter, and personal devices every two years.

Building a System Diagram
Building a system diagram is another important step toward realizing a zero
trust network. Having a clear picture of how both internal and external
network communication is occurring will be useful when designing system
communication channels.

System diagrams, such as the one shown in Figure 9-1, are often maligned for
being horribly out of date. These diagrams are typically built by hand, which
requires a large amount of human effort. Given the speed at which the
diagrams fall out of date, there is a commonly held opinion that system
diagrams simply aren’t worth the investment. This viewpoint, however,
misses the benefit of having a human-focused view of how the system should
be constructed. While an engineer could read code or interrogate existing
systems to determine how the system is constructed, this doesn’t give any
insight into whether that state was desired or accidental.

Figure 9-1. A diagram like this is a good starting point for building a zero trust network.
Directionality is important.

So if system diagrams are useful, but often out of date, the natural question is
how much time and effort should be put into their creation. A good path
forward for an existing network is to first observe the communication that is
flowing through the network. You can capture this communication using tools
that log flows. Once flow information is captured, producing a system
diagram will be an exercise in categorizing classes of communication.

In the next section, we talk about tools for capturing and categorizing network
flows, as well as a strategy for breaking down this large effort into smaller
chunks of work.

Understanding Your Flows
A network flow is a time-bound communication between a source system and
a destination. A single flow could be directly mapped to an entire
conversation when using a bidirectional transport protocol (e.g., TCP). For
unidirectional transport protocols (e.g., UDP), a single flow might only
capture half of a network conversation. This is because while two UDP
flows might be logically related, an observer on the network may be unable
to make that association without a deep understanding of the application data.

Capturing all the flow activity in an existing production network is a logical
first step for a system that wants to move to a zero trust model. Logging flows
in a network over a long period of time is a noninvasive way to discover
what network connections exist and should be considered in the new security
model. Without this up-front information gathering, efforts to move to a zero
trust model will result in frequent network communication issues, causing the
project to be deemed too invasive and disruptive.

WAYS TO DISCOVER FLOWS
There are many different mechanisms for logging and analyzing network
flows. Which system is used will largely depend on the type of network
being run (physical or virtual) and the level of access that an
administrator has over the endpoints.

As of the writing of this book, here are a few of the popular and widely
regarded tools for capturing flows:

Wireshark

Wireshark remains a powerful and widely used network
protocol analyzer. It allows you to capture and
interactively browse the traffic running on a computer
network.

Cisco Secure Network Analytics (formerly Stealthwatch)

This is known for its network telemetry and sophisticated
analytics. It utilizes enterprise telemetry from the
existing network infrastructure for advanced threat
detection, behavioral modeling, and secure network
visibility.

ManageEngine NetFlow Analyzer

This is a real-time bandwidth monitoring tool that relies
on flow technologies like NetFlow, sFlow, and Cflow to
create comprehensive system diagrams and traffic
analytics.

Plixer Scrutinizer

This provides flow analysis for enhanced visibility into
network traffic. It helps in creating detailed system
diagrams by analyzing data from various flow protocols.

Datadog Network Performance Monitoring

Datadog’s solution allows you to visualize network flows
in real time, making it easier to map out system diagrams
and understand the interactions between various
network components.

SolarWinds Network Performance Monitor

SolarWinds provides comprehensive network flow
monitoring and analysis. It can help with creating system
diagrams by tracking flow data using tools such as
NetFlow, Jflow, sFlow, and others.

These tools can be instrumental in logging flows and creating system
diagrams, which are critical for implementing and managing zero trust
networks. They provide the necessary visibility and analytics to
understand network behavior and ensure secure operations.

Physical networks have rich capabilities for accessing the raw packets
that are flowing over the network. Business-class switches will
generally have the ability to mirror packets to a second port on the
switch (known as a SPAN—Switched Port Analyzer—or mirror port).
This approach is relatively safe to enable on a lightly loaded switch, but
it will mask some types of errors in the network. TAP (test access point)
devices, which are placed inline in the network link, will guarantee that
all data is transmitted to a monitoring device. For the purposes of
discovering logical flows in the network, either approach will work.

Virtualized networks might have the ability to inspect network traffic, but
they generally operate on a coarser level. Amazon Web Services, for
example, has a feature that logs every flow in a network, which can be
used to analyze traffic on its systems (Figure 9-2).

While discovering flows via the network fabric gives perfect visibility
into the traffic that is flowing, tying that analysis back to individual
applications is difficult without an endpoint monitoring system. In a case

where control of endpoints is feasible, discovering network flows on the
endpoints themselves can provide a more detailed view of the source of
traffic in the system. Software firewalls operating in log-only mode can
be a useful tool to discover flows in the system without impacting
communication. On Linux endpoints, there are several approaches to
discovering and cataloging network flows, which Harald Welte’s paper
“Flow-based network accounting with Linux” captures.

Figure 9-2. Some cloud providers have flow logging features built in; this is a screenshot of
the AWS Flow Log feature

With all network flows logged, the next goal is to categorize flows based on
higher-level system connections. These connections should be defined at the
logical systems level instead of the individual IP/port level. The connections
being defined with this exercise are very valuable data. With the definitions
in hand, one is able to better enforce known connections and gain awareness
of changes to the communication patterns within a network. Since many
operations of a secure network can be derived from this database of
connections, it’s clear that capturing this mapping is very useful.

For a very large network, capturing and categorizing all network flows could
be an enormous undertaking. The natural question is whether capturing all

https://oreil.ly/KZ74o
https://oreil.ly/vab_j

network connections is a requirement for transitioning to a zero trust
network. Fortunately, a zero trust network can be incrementally realized
within an existing perimeter-based system. One can leverage the existing
perimeter or network boundaries to build a zero trust network on either side
of the boundary. The zero trust model can then spread from zone to zone as in
Figure 9-3, enhancing the network security of the existing system while
maintaining the operational security measures already in place.

Figure 9-3. Zero trust adoption can move zone by zone, providing an easy migration path away
from the traditional perimeter architecture

Micro-Segmentation
Micro-segmentation is a fundamental cornerstone in implementing a zero
trust network and involves dividing the network into smaller, more
manageable, and secure zones, allowing organizations to have precise
control over interactions and data flows between different sectors of the
network.

This level of control is crucial for embodying the principle of zero trust,
which emphasizes verification over blind trust. It ensures that each network
segment follows strict access and security policies, regardless of the overall
network environment.

As per the National Institute of Standards and Technology (NIST),
capabilities enabled by micro-segmentation include:

Segments being isolated and relatively small enables close monitoring
of the traffic because of better visibility.

The consequence of the above capability is that granular access control
is possible by defining associated policies.

In today’s ever-growing threat landscape, micro-segmentation is key in
mitigating the risk of threats spreading within the network. By isolating
breaches to specific segments, it prevents them from spreading and causing
broader compromise. As organizations increasingly adopt hybrid and multi-
cloud architectures, micro-segmentation provides a structured approach to
managing and securing diverse network environments within a unified
framework.

Software-Defined Perimeter
The goal of software-defined perimeter (SDP) architecture is to provide
logically air gapped, dynamically provisioned, on-demand networks that are
isolated from unsecured networks and resistant to common network-based
attacks. By enabling a drop-all firewall by default, an SDP enhances security
by requiring authentication and authorization before allowing access to assets
concealed by the SDP system by users or devices. Furthermore, by mandating
connection pre-vetting, a SDP will restrict all connections into the trusted
zone depending on who may connect, from which devices, to which services
and infrastructure, along with considering other factors.

An SDP can be a useful technique for implementing zero trust architecture
and has been a focus of active research in recent years. For more
comprehensive guidance on the topic, refer to “Integrating SDP and DNS:

https://oreil.ly/cGQ3K
https://oreil.ly/OY7G_

Enhanced Zero Trust Policy Enforcement,” published by the Cloud Security
Alliance.

Controller-Less Architecture
A fully mature zero trust network will have at its core several control plane
systems that provide critical security services. While having these systems is
ideal, it is possible to iterate toward the idealized deployment while using
common infrastructure systems initially. We will explore some of these
systems now.

“Cheating” with Configuration Management
Many operationally mature organizations use configuration management tools
to manage their infrastructure. When using these systems, the desired
configuration state is captured and version controlled. After examining the
current state of the system, the configuration management system uses this
desired configuration to calculate modifications that will bring the system to
the desired state. Using a configuration management tool brings a number of
benefits over planned changes executed by humans:

Changes to the system are applied consistently across the entire fleet.

The configuration data can be stored in a version control system, which
provides a useful record of what changes were made and why.

Configuration drift is less likely to occur, since its state is policed by
the configuration management system.

The first way that configuration management is often deployed is to manage
the configuration of individual computers. The systems are started from a
known blank slate (usually just the initial installation of the operation system)
and then reconfigured to the desired state based on that machine’s role in the
infrastructure. Having this process automated makes it easy to replace
infrastructure.

https://oreil.ly/OY7G_

While using configuration management for this task brings a lot of value,
these tools can also be used as a general-purpose automation framework. For
instance, they can be used to configure cryptographic primitives between
infrastructure hosts, or to poke tightly scoped holes in host-based firewalls.
In this way, configuration management (or CM) systems can be used to drive
a subset of the functions that are normally offered by a mature zero trust
control plane.

Similarly, CM systems can also be used to build up useful abstractions in the
network. Most CM tools support mechanisms for extending a set of available
resources or actions. Using this extension point, it’s possible to build more
complex resources into the system. For example, one could define the
concept of a service resource that would capture all the standard
infrastructure that should be used to make the service available on the
network.

CM IS A TEMPORARY STEPPING STONE
Configuration management systems are best deployed in a manner wherein the system reaches a
stable configuration. With this ideal in mind, using a configuration management system to make
frequent changes to the system would seem counterproductive. We shouldn’t dismiss this concern, as
it has some validity to it. Instead, we should be mindful that leveraging a configuration management
system to build a zero trust network is just a stepping stone to the ideal solution, which would move
those responsibilities to a dedicated controller.

Implementation Phase: Application
Authentication and Authorization
A typical organization makes use of many services, the client-side delivery
of which is increasingly browser based. Since a zero trust network does not
infer trust based on the network address of a connection, every service needs
to handle authentication and authorization.

A simple solution is to store usernames and passwords in each application.
This approach, however, is heavily discouraged, primarily due to

management complexity. Instead of having each application implement its
own authentication systems, it is far better to have applications integrate with
an identity provider system that can provide centralized authentication and
authorization checks. SAML (Security Assertion Markup Language) is one
technology that can be used to integrate an application with an identity
provider. OAuth2 is another.

This is not to say that an application should have no authorization
responsibilities at all. To the contrary, it is expected that some application-
level authorization exists, particularly when considering things like varying
user permissions. The overhead of account management, user authentication,
and high-level authorization/access can be offloaded while still allowing
room for application-centric authorization. When authenticating with an
identity provider, multifactor authentication must be used to ensure that the
user credentials cannot be easily stolen. We discuss multifactor
authentication in Chapter 6.

Authenticating Load Balancers and Proxies
Many service architectures call for the use of a load balancer to distribute
requests to a set of backend hosts. Oftentimes these load balancers represent
the boundary between a client-facing system and a datacenter system. This
can create confusion around how to properly apply zero trust controls in such
a system, since client-facing zero trust semantics can be fairly different from
those of server-side systems.

In Chapter 7, we write about how to manage application authentication and
authorization as an analog to user authentication and authorization. In
backend systems, the best way to authorize an application is to inject
ephemeral credentials at runtime, whether that be an API key, short-lived
certificate, or otherwise. Each credential uniquely represents a running
application instance.

In a load-balanced system, the load-balancing software itself can be viewed
as a server-side application. Each software instance is started with
ephemeral credentials identifying the instance to upstream hosts. This is in

addition to device authentication, which occurs between the load balancer
and upstream system using techniques discussed in Chapter 5.

With this architecture, the load balancer can then handle user and client
device authentication and authorization responsibilities, leveraging identity
providers if desired. Information from the resulting authentication and
authorization process (such as username) can then be sent along with the
original request to the backend hosts. In this way, the zero trust architecture
can be preserved as data crosses client/server boundaries and enters the
datacenter.

PREFER SECURITY TOKENS OVER TOTP
When multifactor authentication was first deployed in organizations, users were given simple devices
that continuously generated time-based tokens. With the prevalence of today’s smartphones, most
users prefer to use a multifactor application on their smartphone to generate codes.

Protocols that use security tokens, like U2F, are increasingly preferred over time-based token
systems due to their protection against phishing attacks. It’s a bonus that these systems are generally
also easier for users to work with. When possible, prefer security tokens over TOTP systems. We
discussed these technologies in Chapter 6.

Relationship-Oriented Policy
Zero trust advocates for a control plane that injects the results of
authorization decisions into the network to allow trusted communication to
occur. In that model, each network flow is individually authenticated and
authorized. Enforcement is obtained by reconfiguring or signaling the
network fabric to allow authorized communication. In a scaled-down zero
trust network, which lacks these control plane systems, we are forced to
scale back that ambition. Instead of building a network that uses dynamic
injection and signaling, we can build a system that defines policies at the
relationship level.

In the relationship-oriented network policy, communication between two
devices is defined and controlled via traditional network filtering
mechanisms like firewalls and required TLS connections. These policy

enforcement mechanisms can seem very similar to a perimeter-based model.
The key difference in the relationship-oriented model is that the policy is
tightly scoped to communicating devices instead of communicating network
segments. This approach is sometimes referred to as microperimeterization.
By capturing and enforcing which devices should be communicating with
each other, we build a database of expected communication, which will be of
great value in the future when dynamic policy systems are deciding whether
to allow a network flow.

Policy Distribution
Distributing policy (as opposed to just enforcement) throughout the network
is a common characteristic of a scaled-down version of zero trust. Given the
fine-grained policy decisions we expect in the network, automation is critical
to making the network operable.

In a mature zero trust network, policy interpretation is fully handled by
control plane systems, which can dynamically reconfigure network
infrastructure and devices, or give authorization responses to signaling
enforcement components. In a controller-less deployment, however, we must
use a different mechanism. Configuration management systems can be used to
fill this void in the network control plane.

Devices can be dynamically configured to implement their own enforcement
of expected network communication. Configuring an on-host software
firewall that is calculated from the relationship policy database can provide
per-host enforcement that is less difficult to operate than a centralized,
physical firewall. Communications can be similarly authorized by hosts via
mechanisms like mutually authenticated TLS, again controlled by
configuration management software.

The key realization here is that by using existing configuration management
systems, we are able to build a virtual control plane, which can distribute
enforcement responsibilities into the network fabric. While this approach is
pragmatic, it isn’t without its downsides:

Requiring hosts to enforce policy risks having that policy removed or
altered should the host be compromised. In compatible environments,
pushing this responsibility across an isolation boundary (e.g., a
hypervisor, the host OS in containerized systems, or network security
groups) provides better protection.

Changes via configuration management systems often have a longer
period of inconsistency while policy is being rolled out into the system.

Defining and Implementing Security Policies
Security policies need to be captured in a format that’s separate from the
individual devices that are used to implement those policies. There are a few
reasons for storing this data outside the implementing systems:

Having the policy captured separately allows for auditing of the
implementation against the desired policy.

The policy definitions can be reused when switching underlying
enforcement systems. For example, configuring a new vendor’s system
is made easier if the policy is captured in a non-vendor-specific format.

A separate database that captures intended policy can quickly fall out of date
unless mechanisms are put in place to ensure that it is consistent with the
implementation. The best way to ensure this happens is to generate
implementation configuration from this policy database using configuration
management systems.

Some system administrators may choose to capture policy directly in
configuration management code. In less mature networks, this approach is
considered sufficient, since the configuration management system will
consistently apply the policies defined on the target devices. As the network
matures, administrators may find that moving the definitions out to data
allows for them to be used in more locations. For example, host-based and
managed network firewalls could be configured from a shared policy
database if that data is extracted from configuration management code.
Defining variable trust policies is too difficult to attempt in less mature

networks. System administrators should instead focus on defining and
capturing known policies.

When building up policies, especially in an existing network, it is helpful to
have mechanisms for testing proposed policies. The gold standard is a
system that can take proposed policy changes and report on traffic that would
be denied by the enforcement of those policy changes. Building up this policy
preview system requires quite a few components: a database of logged
production flows, a policy simulator, and a system to identify differences in
current production policy and proposed policy. For many organizations, that
level of sophisticated policy simulation is simply out of reach.

A simpler approach to safely introducing policy changes can be achieved
using the following rollout procedure:

1. Take a subset of the desired policy, which we will call the proposed
policy.

2. Deploy the proposed policy in a logging-only fashion.

3. Collect production traffic over a sufficient period of time.

4. Investigate traffic that would be rejected should the proposed policy be
enforced.

5. Enforce the proposed policy.

6. Repeat this process until all desired policy has been deployed.

7. When all the desired policy is in place, enable a policy that rejects
traffic by default.

This “log then enforce” procedure will provide ample time to discover
unforeseen issues in the production environment. In addition to this approach,
a phased rollout, wherein policy is enforced over a subset of the production
footprint, can also help identify issues without affecting the entire production
system.

Zero Trust Proxies

Zero trust proxies are application-level proxy servers that can be used to
secure a zero trust network. Proxies are deployed as infrastructure to handle
authentication, authorization, and encryption responsibilities. The manner in
which these proxies are deployed is critical to ensure the safety of a zero
trust network.

Zero trust proxies can operate in two different modes: reverse proxy or
forward proxy. Depending on the situation, one or both of these proxy modes
may be used, as shown in Figure 9-4.

In reverse proxy mode, the proxy is receiving connection requests from zero
trust-enabled clients. The proxy receives the initial connection, validates that
the connection should be allowed, and then passes the request to the
application for processing. In forward proxy mode, a nonzero trust-aware
component needs to make a network request to another zero trust system on
the network. Since the nonzero trust-aware component is unable to work with
the control plane to initiate the request properly, it communicates through the
authentication proxy to handle that responsibility.

Figure 9-4. Co-located forward proxies can be used to connect to zero trust resources from
legacy systems, while co-located or centralized reverse proxies can allow access to legacy

services by zero trust clients

Proxies can be used to build a zero trust network, but the proxies should be
deployed on the same device that the workload is running on. When a zero
trust network is built in this manner, all workload communication is forcibly
routed through the proxy before being emitted on the network. Isolating this
responsibility in a proxy brings advantages over incorporating it in
individual applications, which we cover in Chapter 8.

Placing proxies on dedicated devices is not recommended for building a zero
trust network. Trying to isolate zero trust responsibilities in an external proxy
goes against the model, which seeks to secure all traffic, including traffic
between proxies/load balancers and backend services.

Building a zero trust network can be especially difficult for system
administrators who do not have complete control of all devices or services
on the network. For example, a network might have vendor-supplied
components that need to be secured without changing the device itself.

Zero trust proxies can help bridge the gap in this situation. Placing such a
proxy between the unmodifiable component and the zero trust network can
allow that component to participate in the network, though with a lesser
guarantee of its security. It is critical that the nonzero trust-aware component
be completely isolated. This isolation must ensure that all network
communication to and from that component can only occur through its
authentication proxy. If possible, direct mechanical connection should be
preferred.

Client-Side Versus Server-Side Migrations
When realizing a zero trust network, deciding on whether client-to-server
interactions or server-to-server interactions should be undertaken first is
ultimately dependent on the needs of the organization and the level of effort
required to meet the goal. Client-to-server interactions are usually the first to
be focused on. Oftentimes, the clients are physically mobile and accessing
services from uncontrolled networks. Additionally, with these devices being
mobile, the physical security of the device is reasonably called into question.
Building zero trust capabilities at this access point, therefore, brings a lot of
value.

There are, however, real hurdles to building zero trust at the client/server
layer. Organizations don’t necessarily have existing automation systems
installed on client machines to allow the zero trust network to be built.
Additionally, the types of devices in use on the client side can be much more
diverse, which means that the required automation has to be compatible with
more systems.

Server-to-server interactions can be an easier initial target for zero trust
networks. These systems frequently have existing automation tools installed.
They also tend to have a less diverse set of providers in use. Finally, they are
often the systems that are housing sensitive data, and so are an attractive
target for would-be attackers. Ultimately, the decision of where to start
should focus on which target is the weakest link in the system’s network
defenses. Building a threat model can help determine which systems are the

most exposed. With that knowledge, choosing where to invest time and
resources is easier.

Given these considerations, the following steps outline a structured approach
to determining the focus of initial efforts in transitioning to a zero trust
network, ensuring that organizational resources are utilized effectively to
mitigate identified risks:

Identify priority areas

Evaluate the risks associated with both client-side and
server-side interactions to ascertain where the initial efforts
would be most beneficial.

Conduct threat modeling

Undertake a threat modeling exercise to gauge the potential
threats facing client-to-server and server-to-server
interactions, aiding in informed decision making.

Allocate resources

Based on the assessment and threat modeling, allocate
resources strategically to address the identified priorities.

Iterative implementation

Begin with the prioritized layer, apply zero trust principles,
assess the effectiveness, and progressively extend the
implementation to the other layers.

Monitor and adapt

Establish a continuous monitoring mechanism to evaluate
the effectiveness of the zero trust controls and adapt the
strategy in response to evolving threat landscapes and
organizational requirements.

By methodically evaluating the risks and benefits associated with each layer,
organizations can make informed decisions on where to focus initial efforts.
The structured approach outlined above provides a roadmap to navigate this
complex terrain, ensuring the transition to a zero trust network is strategic,
manageable, and aligned with organizational objectives.

The journey toward zero trust may begin with a focus on either client-side or
server-side interactions; however, a holistic and continuous approach to
implementing and refining zero trust principles across all network
interactions is fundamental for achieving a robust security posture in the long
term.

Endpoint Security
In the context of realizing a zero trust network, endpoint security is
paramount. It involves securing every device that connects to the network, as
each endpoint can potentially serve as an entry point for threats. To reinforce
endpoint security, ensure that all endpoints comply with your organization’s
security policies. This includes implementing strong authentication, regular
patching, and endpoint detection and response (EDR) solutions. Additionally,
enforce the principle of least privilege to minimize the access and
permissions of each endpoint. One example of enforcing the principle of
least privilege could be a company policy wherein employees are not given
local admin rights on their company-issued laptops. Instead, they have
standard user accounts for daily tasks. If they need to install software or
perform actions that require admin rights, they must go through a controlled
process, such as submitting a request to the IT department. This procedure is
reviewed, and if justified, the IT team performs the action or grants
temporary admin rights. This minimizes the risk of unauthorized changes to
the system and reduces the attack surface for potential exploits. The expected
outcome is a network where trust is continuously earned and validated,
drastically reducing the attack surface and enhancing the overall security
posture.

Case Studies
Since the exact architecture of a zero trust network is dependent on the
details of a particular organization’s network, it can be hard to see how all
the pieces fit together. To help visualize how these principles manifest
themselves in different situations, we are going to explore the experiences of
a couple of organizations that have successfully transitioned to a zero trust
model.

Google’s BeyondCorp effort focused on bringing zero trust architecture to the
client-to-server interactions that their highly distributed and mobile
workforce uses every day.

PagerDuty’s cloud-agnostic network focuses on server-to-server and cross-
cloud interactions that needed to be secured from both external and internal
threats.

Case Study: Google BeyondCorp
Betsy Beyer

Starting in November 2014, Google published a series of articles in ;login:
describing a new and groundbreaking security model it was deploying to its
entire corporate network. The following case study is based on excerpts from
those three articles, with permission from Google and :login;.

We encourage you to read the original source material to learn more details:

“BeyondCorp: A New Approach to Enterprise Security” by Rory Ward
and Betsy (Adrienne Elizabeth) Beyer

“BeyondCorp: Design to Deployment at Google” by Barclay Osborn,
Justin McWilliams, Betsy Beyer, and Max Saltonstall

“Beyond Corp: The Access Proxy” by Batz Spear, Betsy Beyer, Luca
Cittadini, and Max Saltonstall

https://oreil.ly/iLWz_
https://oreil.ly/CSQxe
https://oreil.ly/OJyIZ

By the early 2010s, Google was increasingly uncomfortable with the
perimeter model of network defense. Creating high, impregnable “castle
walls” was not going to protect us when tens of thousands of our employees
performed much of their work while physically outside our offices, while on
any given day we invited thousands of people inside. At the same time, as the
critical role Google plays in the lives of billions of users continued to
increase, so did the almost incalculable value we place on the user data
entrusted to us.

In light of the scope and scale of our employee base and our corporate
network, and the variety of ways in which our employees interact with
corporate resources (as a mobile workforce using cloud services and a
variety of client devices), it became obvious that the castle-wall metaphor
was unsustainable. We needed a strategy much more akin to a modern city
than a medieval castle: a system that mediates access to applications, data,
and services according to who you are, not which network you use.

With this security imperative in mind, Google revisited the state of the
enterprise with a fresh set of eyes. We knew that we could do better than any
of the conventional network security models deployed across the industry, so
we took the radical step of redesigning our entire approach.

Starting from square one in re-envisioning internal network security, we
invested over four years of design and iteration in creating a robust
implementation of the zero trust model. While most enterprises assume that
the internal network is a safe environment in which to expose corporate
applications, we assume that an internal network is as fraught with danger as
the public internet.

This new model dispenses with a privileged corporate network entirely.
Instead, access depends solely on device and user credentials, regardless of
a user’s network location—be it an enterprise location, a home network, or a
hotel or coffee shop. All access to enterprise resources is fully authenticated,
fully authorized, and fully encrypted based upon device state and user
credentials. We can enforce fine-grained access to different parts of
enterprise resources. As a result, all Google employees can work

successfully from any network, and without the need for a traditional VPN
connection into the privileged network. The user experience between local
and remote access to enterprise resources is effectively identical, apart from
potential differences in latency.

When reading the following case study, keep in mind that we’re well aware
that Google is unique both in terms of its scale and in the amount of resources
we were able to devote to this problem space. Because we weren’t
constrained by resources, we could act more or less purely motivated by
ambitious goals that did away with the conventional network security
paradigm.

Fast-forward from BeyondCorp’s inception to 2017: hacking tools have
advanced in sophistication and dropped massively in cost. Malicious efforts
that might once have been worthwhile only when turned against Google-scale
targets are now applicable to much smaller enterprises. While the risk
profile of small- to medium-sized organizations has increased, so too have
their options to protect themselves; the commercial network security industry
has likewise matured. While Google had to build its security infrastructure
from scratch, today there actually are enterprise network security offerings
your organization can employ in moving away from the perimeter model.
Regardless of individual components you’re considering in this space, keep
the core design principles and objectives that motivated Google in mind as
you develop a strategy.

While technical and implementation details of BeyondCorp may have varying
degrees of direct applicability to your enterprise or organization, many of the
risk factors we designed to protect against are widely germane, and the
fundamental design principles we employed should be directly relevant to
all.

The Major Components of BeyondCorp
As shown in Figure 9-5, BeyondCorp consists of many cooperating
components to ensure that only appropriately authenticated devices and users

are authorized to access the requisite enterprise applications. The following
sections describe individual components of BeyondCorp.

Figure 9-5. BeyondCorp components and access flow

Securely identifying the device
BeyondCorp securely identifies and tracks all managed devices using a
master Device Inventory Database and device certificates.

Device Inventory Database
BeyondCorp uses the concept of a “managed device,” which is a device that
is procured and actively managed by the enterprise. Only managed devices
can access corporate applications. A device tracking and procurement
process revolving around our Device Inventory Database is one cornerstone
of this model.

As a device progresses through its lifecycle, Google keeps track of changes
made to the device. This information is monitored, analyzed, and made
available to other parts of BeyondCorp. Because Google has multiple
inventory databases, we use a meta-inventory database to amalgamate and
normalize device information from these multiple sources, and to make the
information available to downstream components of BeyondCorp. With this
meta-inventory in place, we have knowledge of all devices that need to
access our enterprise.

Device identity
All managed devices need to be uniquely identified in a way that references
the record in the Device Inventory Database. One way to accomplish this
unique identification is to use a device certificate that is specific to each
device. To receive a certificate, a device must be both present and correct in
the Device Inventory Database. We store the certificate on a hardware or
software trusted platform module (TPM) or a qualified certificate store. A
device qualification process validates the effectiveness of the certificate
store, and only a device deemed sufficiently secure can be classed as a
managed device. These checks are also enforced as certificates and are
renewed periodically. Once installed, the certificate is used in all
communications to enterprise services. While the certificate uniquely
identifies the device, it does not single-handedly grant access privileges.
Instead, it is used as a key to a set of information regarding the device.

Securely identifying the user
BeyondCorp also tracks and manages all users in a User Database and a
Group Database. This database system tightly integrates with Google’s HR
processes that manage job categorization, usernames, and group
memberships for all users.

An externalized, single sign-on (SSO) system is a centralized user
authentication portal that validates primary and second-factor credentials for
users requesting access to our enterprise resources. After validating against
the User Database and Group Database, the SSO system generates short-

lived tokens that can be used as part of the authorization process for specific
resources.

Externalizing applications and workflows: the Access Proxy
All enterprise applications at Google are exposed to external and internal
clients via an internet-facing Access Proxy (AP) that enforces encryption
between the client and the application. The AP is configured for each
application and provides common features such as global reachability, load
balancing, access control checks, application health checks, and denial-of-
service protection. This proxy delegates requests as appropriate to the
backend application after the access control checks (described in the next
section) complete. See “Leveraging and Extending the GFE” for more details
about AP features.

Implementing inventory-based access control
The level of access given to a single user and/or a single device can change
over time. By interrogating multiple data sources, we are able to dynamically
infer the level of trust to assign to a device or user. The Access Control
Engine (described in more detail next) can then use this trust level as part of
its decision process, as in the following examples:

A device that has not been updated with a recent OS patch might be
relegated to a reduced level of trust.

A particular class of device, such as a specific model of phone or
tablet, might be assigned a particular trust level.

A user accessing applications from a new location might be assigned a
different trust level.

We use both static rules and heuristics to ascertain these levels of trust. An
Access Control Engine within the Access Proxy provides service-level
authorization to enterprise applications on a per-request basis. The
authorization decision takes several factors into account:

Information about the user, the groups to which the user belongs, the
device certificate, and artifacts of the device, as reported by the Device
Inventory Database

The inferred level of trust in the user and the device

If necessary, the Access Control Engine can also enforce location-based
access control

For example, the following policies are possible with the Access Control
Engine:

Restrict access to Google’s bug tracking system to full-time engineers
using an engineering device.

Restrict access to a finance application to full-time and part-time
employees in the finance operations group using managed
nonengineering devices.

The Access Control Engine can also restrict parts of an application in
different ways. For example, viewing an entry in our bug tracking system
might require less strict access control than updating or searching the same
bug tracking system.

Leveraging and Extending the GFE
A conventional approach might integrate each backend with the device trust
inference service in order to evaluate applicable policies; however, this
approach would significantly slow the rate at which we’re able to launch and
change products. Instead, Google implemented a centralized policy
enforcement frontend AP to handle coarse-grained company policies.

BeyondCorp leverages the existing Google Front End (GFE) infrastructure as
a logically centralized point of access for policy enforcement. Funneling
requests in this manner led us to naturally extend the GFE to provide other
features, including self-service provisioning, authentication, authorization,
and centralized logging. The resulting extended GFE is called the AP. The
following section details the features of the AP that are particularly pertinent

to this case study. For details about its other features, see “Beyond Corp: The
Access Proxy”.

The GFE provides some built-in benefits, such as load balancing for the
backends and TLS management, that weren’t designed specifically for
BeyondCorp. The AP extends the GFE by introducing authentication and
authorization policies.

User authentication
In order to properly authorize a request, the AP needs to identify the user and
the device making the request. Authenticating the device poses a number of
challenges in a multiplatform context, which we address in “Challenges with
Multiplatform Authentication”.

The AP verifies user identities by integrating with Google’s identity provider
(IdP). Because it isn’t scalable to require backend services to change their
authentication mechanisms in order to use the AP mechanism, the AP needs
to support a range of authentication options: OpenID Connect, OAuth, and
some custom protocols. The AP also needs to handle requests without user
credentials, for example, a software management system attempting to
download the latest security updates. In these cases, the AP can disable user
authentication.

When the AP authenticates the user, it strips the credential before sending the
request to the backend. Doing so is essential for two reasons:

The backend can’t replay the request (or the credential) through the
Access Proxy.

The proxy is transparent to the backends. As a result, the backends can
implement their own authentication flows on top of the Access Proxy’s
flow, and won’t observe any unexpected cookies or credentials.

Authorization
Two design choices drove our implementation of the authorization
mechanism:

https://oreil.ly/faYDF

A centralized access control list (ACL) engine queryable via remote
procedure calls (RPCs)

A domain-specific language to express the ACL that is readable and
extensible

Providing ACL evaluation as a service enables us to guarantee consistency
across multiple frontend gateways (e.g., AP or the RADIUS network access
control infrastructure, or Remote Authentication Dial-In User Service, and
SSH, or Secure Shell, proxies). We chose to combine coarse-grained,
centralized authorization at the AP with fine-grained authorization at the
backend.

Mutual authentication between the proxy and the backend
Because the backend delegates access control to the frontend, it’s imperative
that the backend can trust that the traffic it receives has been authenticated
and authorized by the frontend. This is especially important since the AP
terminates the TLS handshake, and the backend receives an HTTP request
over an encrypted channel.

Meeting this condition requires a mutual authentication scheme capable of
establishing encrypted channels—for example, you might implement mutually
authenticated TLS authentication and a corporate public key infrastructure.
Our solution is an internally developed authentication and encryption
framework called LOAS (Low Overhead Authentication System) that
bidirectionally authenticates and encrypts all communication from the proxy
to the backends.

One benefit of mutual authentication and encryption between the frontend and
backend is that the backend can trust any additional metadata inserted by the
AP (usually in the form of extra HTTP headers). While adding metadata and
using a custom protocol between the reverse proxy and the backends isn’t a
novel approach (for example, see the Apache JServ Protocol), the AP’s
mutual authentication scheme ensures that the metadata is not spoofable.

As an added benefit, we can also incrementally deploy new features at the
AP, which means that consenting backends can opt in by simply parsing the

corresponding headers. We use this functionality to propagate the device trust
level to the backends, which can then adjust the level of detail served in the
response.

Challenges with Multiplatform Authentication
At minimum, performing proper device identification requires two
components:

Some form of device identifier

An inventory database tracking the latest known state of any given
device

Because BeyondCorp replaces trust in the network with an appropriate level
of trust in the device, each device must have a consistent, non-cloneable
identifier, while information about the software, users, and location of the
device must be integrated in the inventory database.

Desktops and laptops
Desktops and laptops use an X.509 machine certificate and a corresponding
private key stored in the system certificate store. Key storage, a standard
feature of modern operating systems, ensures that command-line tools (and
daemons) that communicate with servers via the AP can be consistently
matched against the correct device identifier. Since TLS requires the client to
present a cryptographic proof of private key possession, this implementation
makes the identifier non-spoofable and non-cloneable, assuming it’s stored in
secure hardware such as a trusted platform module (TPM).

Mobile devices
Instead of relying on certificates, we use a strong device identifier natively
provided by the mobile operating systems. For iOS devices, we use the
identifierForVendor, while Android devices use the device ID reported by
the Enterprise Mobility Management application.

Migrating to BeyondCorp
Like virtually every other enterprise in the world, Google maintained a
privileged network for its clients and applications for many years. This
paradigm gave rise to significant infrastructure that is critical to the day-to-
day workings of the company. While all components of the company will
migrate to BeyondCorp, moving every network user and every application to
the BeyondCorp environment in one fell swoop would be incredibly risky to
business continuity. For that reason, Google has invested heavily in a phased
migration that has successfully moved large groups of network users to
BeyondCorp with zero effect on their productivity.

Deploying an unprivileged network
To equate local and remote access, BeyondCorp defines and deploys an
unprivileged network that very closely resembles an external network,
although within a private address space. The unprivileged network only
connects to the internet, limited infrastructure services (e.g., DNS, Domain
Name Service, DHCP, Dynamic Host Configuration Protocol, and NTP,
Network Time Protocol), and configuration management systems such as
Puppet. All client devices are assigned to this network while physically
located in a Google building. There is a strictly managed access control list
between this network and other parts of Google’s network.

Workflow qualification
All the applications used at Google are required to work through the AP. The
BeyondCorp initiative examined and qualified all applications, which
accomplish tasks ranging from the simple (e.g., supporting HTTPS traffic) to
the more difficult (e.g., SSO integration). Each application required an AP
configuration and, in many cases, a specific stanza in the Access Control
Engine. Each application went through the following phases:

1. Available directly from the privileged network and via a VPN
connection externally.

2. Available directly from the privileged network and via the AP from
external and unprivileged networks. In this case, we used split DNS.
The internal name server pointed directly at the application, and the
external name pointed at the AP.

3. Available via the AP from external, privileged, and unprivileged
networks.

Cutting back on VPN usage
As more and more applications became available via the Access Proxy, we
started actively discouraging users from using the VPN, employing the
following strategy:

1. We restricted VPN access to users with a proven need.

2. We monitored use of the VPN and removed access rights from users
who did not use the VPN over a well-defined period.

3. We monitored the VPN usage for active VPN users. If all of their
workflows were available through the AP, we strongly encouraged
users to give up their VPN access rights.

Traffic analysis pipeline
It was very important that we moved users to the unprivileged network only
when we were certain (or very close to certain) that all of their workflows
were available from this network. To establish a relative degree of certainty,
we built a traffic analysis pipeline. Our analysis proceeded as follows:

1. As input to this pipeline, we captured sampled netflow data from every
switch in the company.

2. We analyzed this data against the canonical ACL between the
unprivileged network and the rest of the company’s network. This
analysis allowed us to identify the total traffic that would have passed
the ACL, plus an ordered list of traffic that would not have passed the
ACL.

3. We could now attach the non-passing traffic to specific workflows
and/or specific users and/or specific devices.

We progressively worked through the list of non-passing traffic to make it
function in the BeyondCorp environment.

Unprivileged network simulation
To augment the traffic analysis pipeline, we also simulated unprivileged
network behavior across the company via a traffic monitor that we installed
on all user devices attached to Google’s network. The traffic monitor
examined all incoming and outgoing traffic on a per-device basis, validated
this traffic against the canonical ACL between the unprivileged network and
the rest of the company’s network, and logged the traffic that did not pass the
validations. The monitor had two modes:

Logging mode

Captured the ineligible traffic, but still permitted said traffic
to leave the device

Enforcement mode

Captured and dropped the ineligible traffic

Migration strategy
With the traffic analysis pipeline and the unprivileged simulation in place,
we defined and began implementing a phased migration strategy that entails
the following:

1. Identifying potential sets of candidates by job function and/or workflow
and/or location.

2. Operating the simulator in logging mode, identifying users and devices
that have >99.9% eligible traffic for a contiguous 30-day period.

3. Activating simulator enforcement mode for users and devices that have
>99.99% eligible traffic for that period. If necessary, users can revert

the simulator to logging mode.

4. After operating the simulator in enforcement mode successfully for 30
days, recording this fact in the device inventory.

5. Along with inclusion in the candidate set, successful operation in the
simulator’s enforcement mode for 30 days provides a very strong signal
that the device should be assigned to the unprivileged network.

Exemption handling
In addition to automating the migration of users and devices from our
privileged to our new unprivileged network as much as possible, we also
implemented a simple process for users to request temporary exemptions
from this migration:

We maintained a known list of workflows that were not yet qualified for
BeyondCorp. Users could search through these workflows, and with the
correct approval levels, mark themselves and their devices as active
users of a certain workflow.

When the workflow was eventually qualified, its users were notified
and were again eligible to be selected for migration.

Lessons Learned
The migration to BeyondCorp came with a set of challenges and kinks to be
ironed out along the way. Hopefully the following lessons can save some
time and headaches for other organizations seeking to implement a similar
model.

Communication
Fundamental changes to the security infrastructure can potentially adversely
affect the productivity of the entire company’s workforce. It’s important to
communicate the impact, symptoms, and available remediation options to
users, but it can be difficult to find the balance between over-communication
and under-communication.

Under-communication results in the following problems:

Surprised and confused users

Inefficient remediation

Untenable operational load on the IT support staff

Over-communication is also problematic:

Change-resistant users tend to overestimate the impact of changes and
attempt to seek unnecessary exemptions.

Users can become inured to potentially impactful changes.

As Google’s corporate infrastructure is evolving in many unrelated
ways, it’s easy for users to conflate access issues with other ongoing
efforts, which also slows remediation efforts and increases the
operational load on support staff.

Engineers need support
Transitioning to a new network security paradigm doesn’t happen overnight,
and requires coordination and interaction among multiple teams. At a large
enterprise scale, it’s impossible to delegate the entire transition to a single
team. The migration will likely involve some backward-incompatible
changes that need sufficient management support.

In our experience, the success of the transition largely depended on how easy
it was for teams to successfully set up their service behind the Access Proxy.
Making the lives of developers easier should be a primary goal, so keep the
number of surprises to a minimum. Provide sane defaults, create walkthrough
guides for the most common use cases, and invest in documentation. Provide
sandboxes for the more advanced and complicated changes—for example,
you can set up separate instances of the Access Proxy that the load balancer
intentionally ignores but that developers can reach (e.g., temporarily
overriding their DNS configuration). Sandboxes have proven extremely
useful in numerous cases, like when we needed to make sure that clients

would be able to handle TLS connections after major changes to the X.509
certificates or to the underlying TLS library.

Data quality and correlation
Poor data quality in asset management can cause devices to unintentionally
lose access to corporate resources. Typos, transposed identifiers, and
missing information are common. Such mistakes may happen when
procurement teams receive asset shipments and add the assets to our systems,
or may be due to errors in a manufacturer’s workflow. Data quality problems
also originate quite frequently during device repairs, when physical parts or
components of a device are replaced or moved between devices. Such issues
can corrupt device records in ways that are difficult to fix without manually
inspecting the device.

The most effective solutions in this arena have been to find local workflow
improvements and automated input validation that can catch or mitigate
human error at input time. Double-entry accounting helps, but doesn’t catch
all cases. However, the need for highly accurate inventory data in order to
make correct trust evaluations forces a renewed focus on inventory data
quality. The accuracy of our data is at previously unseen levels, and this
precision has had secondary security benefits. For example, the percentage of
our fleet that is updated with the latest security patches has increased.

Sparse data sets
Upstream data sources don’t necessarily share overlapping device
identifiers. To enumerate a few potential scenarios:

New devices might have asset tags but no hostnames.

The hard drive serial number might be associated with different
motherboard serials at different stages in the device lifecycle.

MAC addresses might collide.

A reasonably small set of heuristics can correlate the majority of deltas from
a subset of data sources. However, in order to drive accuracy closer to

100%, you need an extremely complex set of heuristics to account for a
seemingly endless number of edge cases. A tiny fraction of devices with
mismatched data can potentially lock hundreds or even thousands of
employees out of applications that they need to be productive.

Conclusion
Fortunately, an organization seeking to implement a zero trust network
strategy today does have resources at hand to bootstrap this process. While
this journey will by no means be trivial, there are a number of enterprise and
commercial solutions available in this arena, and we hope that the rough
blueprint outlined in this case study is helpful as you contemplate potential
approaches. Keep the core motivations and design principles outlined here in
mind while weighing your options and choosing the optimal security strategy
for your needs.

Case Study: PagerDuty’s Cloud-Agnostic
Network
Evan Gilman and Doug Barth

PagerDuty began building a zero trust network in 2013, and completed it
in 2014. It has continued to evolve, and remains in production as of this
writing. The authors would like to thank PagerDuty for its permission to
use its name and describe some of the details behind its zero trust
implementation. All opinions are those of the authors, and PagerDuty is
not at fault for errors or inaccuracies contained herein.

PagerDuty is a platform that organizations use to power their incident
response. Users are able to integrate their existing tools like monitoring,
ticketing, and reporting systems using PagerDuty’s API. Most users first
configure their monitoring systems to route alerts through PagerDuty so
PagerDuty can manage on-call rotations and escalations. Given the critical
nature of the service being provided, a zero trust network was ideal to meet
both the reliability and data privacy requirements of that system.

PagerDuty’s zero trust network primarily deals with server-to-server
interactions purely within a multiprovider public cloud environment. Cloud
providers have varying network control plane capabilities. Some providers
give none of the controls that are normally required for a traditional
perimeter system like a stateful firewall, private addressing, and network
ACLs. In the most extreme case, hosts are placed onto the public internet and
the host needs to secure itself. This disparity in provider capabilities makes
running a provider-agnostic network exceptionally difficult when using
traditional perimeter concepts.

PagerDuty’s system also makes heavy use of WAN (wide area network)
communication in its normal operation. Business-critical systems are
deployed across three separate regions with the goal of surviving the loss of
an entire region without impacting normal business operations. Relying on
the WAN for normal application operation places some heavy requirements
on the system. The internet is generally a challenging network environment
with the potential for unexpected high latency and packet loss. In addition,
communications need to be encrypted and authenticated to ensure data
privacy and integrity. By deploying a perimeterless zero trust network,
failure isolation is achieved since each node in the cluster is responsible for
just its own communication.

Configuration Management as an Automation Platform
The key asset used to construct PagerDuty’s zero trust network is its
configuration management tool, Chef. Chef was already being used to
configure every virtual machine in the system, and so it is a readily available
automation layer which could be leveraged to build a zero trust network.
With configuration management, policy can be centrally managed in code
while distributing the enforcement into the entire fleet.

This approach has a number of benefits:

Network compute power scales as the number of instances increases.
This scaling property removes the need to buy ever larger shared
hardware as the network grows.

Failures tend to be more isolated. Instead of having “the firewall,” the
system ends up having many smaller firewalls. A failure of a single
firewall affects a much smaller set of traffic and oftentimes can be
routed around.

Distributing policy throughout the network isn’t without its downsides:

Constant validation of the expected policy state is required to ensure
that all nodes are correctly enforcing the expected policy.

Ensuring that changes to policies are consistent across the fleet. This
can be a bit jarring if a system administrator expects to be able to make
a change and see it take effect immediately.

While configuration management was an ideal place to quickly iterate on the
zero trust ideas, it is not an ideal long-term solution. As these systems have
become more mature, they have graduated out of Chef and into their own
systems, which can be deployed and tuned for optimal performance.

Dynamically Calculated Local Firewalls
Without a consistent provider-supplied firewall solution, PagerDuty found it
needed to ensure that each host was secured without relying on provider
systems. To meet that need, Chef was taught how to generate IPtables
configuration based on its existing knowledge of the system.

Servers in the system are categorized by their role, which captures the set of
services and expected communication patterns that should exist for that role.
Each server of a given role is identical in its configuration.

IPtables chains are constructed on each individual host that enumerates the IP
addresses for servers of a particular role. These chains are then used to
define the rules which allow expected access by role. If a flow does not
match the whitelisted rules, its packets are dropped.

Here’s an example of an IPtables configuration representing this
arrangement:

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

target prot in out source destination

ACCEPT all lo * 0.0.0.0/0 0.0.0.0/0

ACCEPT all * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

bastion tcp * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

lb tcp * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:80

lb tcp * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443

LOG all * * 0.0.0.0/0 0.0.0.0/0 limit: avg 10/min burst 5...

DROP all * * 0.0.0.0/0 0.0.0.0/0

Chain bastion (1 references)

target prot in out source destination

ACCEPT all * * 192.168.0.55 0.0.0.0/0

ACCEPT all * * 192.168.5.4 0.0.0.0/0

ACCEPT all * * 10.0.2.78 0.0.0.0/0

ACCEPT all * * 172.16.0.132 0.0.0.0/0

Chain lb (2 references)

target prot in out source destination

ACCEPT all * * 192.168.1.221 0.0.0.0/0

ACCEPT all * * 192.688.1.222 0.0.0.0/0=

Distributed Traffic Encryption
For network encryption and authentication, PagerDuty decided to implement
an IPsec host-to-host mesh network. This network architecture has a number
of benefits:

All packets are encrypted and authenticated by every node in the system.

Since encryption and authentication are distributed throughout the
system, as the number of hosts grows, the capacity to provide these
critical functions grows as well.

Network encryption and authentication are normally viewed as an
application-level concern, but requiring every application to provide these
safety controls results in a less secure or less operable system. Application
encryption can have issues with correct implementation of the encryption
specifications, lack the configuration controls to respond to security
vulnerabilities, or introduce performance regressions into the system. For
these reasons, PagerDuty decided to rely on the kernel’s IPsec stack to
provide this bit of critical infrastructure.

A system utilizing mutually authenticated TLS could provide similar benefits
to an IPsec-based network. In order to provide the same guarantees, system
administrators should separate the TLS infrastructure from the application.

OUT-OF-PROCESS ENCRYPTION IS INCREASINGLY
BECOMING THE STANDARD

In many systems, encryption and authentication are considered an application concern, and
applications usually provide this functionality using standard libraries. As the number of applications
in systems has grown, systems are increasingly using out-of-process mechanisms for securing
network communication.

By moving the encryption logic into a separate process, administrators gain a standard set of controls
to use to respond to security vulnerabilities. In addition, having a separate process controlling the
sensitive encryption process reduces the surface area for attacks that might expose secret data.

PagerDuty’s network uses IPsec in transport mode. The phase 1 and phase 2
cipher suites use the strongest possible configuration available. When
choosing the cipher suites, RFC 6379 was referenced to ensure that the
algorithms chosen were recommended to be used together. IPsec
communication is normally transmitted using ESP packets. Since some cloud
providers’ networks do not route ESP packets, all IPsec traffic is
encapsulated in UDP packets.

PagerDuty’s experience with operating an IPsec mesh network in production
has been a bit mixed. The network has handled production throughput, and
has grown with the fleet. During the initial rollout, communication failures
did occur, often due to inconsistent state on either side of the IPsec
relationship. Having metrics and logging to surface these issues was critical
to operating the network. While having these failures was certainly
frustrating, with a mesh network, these failures were isolated to pairs of
hosts, which often reduced the impact of the failure.

PagerDuty’s initial rollout of the IPsec network utilized Chef and some
simple scripts to configure preexisting IPsec packages. As the network has
grown, the configuration of the system has moved out of Chef and into a
dedicated service that can handle the sole responsibility of configuring this

https://oreil.ly/o70SW

aspect of the system. Moving the logic into its own system was done to
lessen the convergence time for deploying a change to the network. The Chef-
based system required running an entire Chef convergence run to update all
relevant hosts in the network—a heavyweight operation that handles more
than just the network configuration.

Decentralized User Management
PagerDuty’s user access control is deployed in a centralized fashion, much
like the networking systems previously discussed. Instead of relying on a
centralized LDAP system, local users and groups are programmatically
constructed on each host in the network. This approach removes a
dependency on the network, which helps the system continue to operate even
during challenging periods.

While the enforcement of user access control is distributed into the network,
the definitions of which users and groups should be created is centralized.
This information could be captured in an LDAP server or some other
database. In PagerDuty’s case, it used Chef data bags to define users and
groups. Server roles are marked with the set of groups that should be created
on that role. Chef uses this data to only create the users and groups on a
particular server that need access to that infrastructure.

Rollout
PagerDuty’s network, like most networks, is an ever-evolving system. The
network transitioned from a traditional design to a zero trust network over
time, while production traffic was flowing.

Changing a network architecture while critical production traffic is flowing
can be difficult, so it was important that the rollout was planned to reduce
risk. PagerDuty followed a slow rollout pattern:

1. New policies are defined.

2. Policies are deployed in a manner that does not affect the production
system, but instead collects useful metrics or logs.

3. The metrics/logs are inspected over a long period of time to ensure that
the behavior is desired.

4. The policy is slowly enabled across the fleet, growing from a small
percentage to 100% coverage.

This simple procedure can be used to reduce the risk of most production
changes. It is much better than the common approach of using a scheduled
maintenance window.

The slow rollout pattern is used to deploy most changes in PagerDuty’s
systems. For the distributed firewall project, all hosts were initially
configured to log packets, which would be dropped at a later date. Firewall
rules were created to classify traffic flows, which could be deployed without
the risk of blocking any production traffic. With the rules deployed, the
logged traffic was reduced; and once enough time had passed, the system was
reconfigured to drop all non-whitelisted traffic.

The distributed traffic encryption followed the same rollout procedure. IPsec
policies were first deployed into the fleet in a no-op configuration. These
policies control whether a particular traffic flow should use IPsec for
communication. IPsec supports three different states:

None

IPsec will not be used.

Use

IPsec will be optimistically used if a relationship can be
negotiated.

Required

IPsec must be used for traffic to be processed.

The initial set of policies were deployed in the none state. The end goal was
to get the entire system to the required state by stepping through the use state.
Based on testing of the failure modes of the use state, it was determined that

intermediate stateful firewalls would block communication if the IPsec
relationships were broken, as packets would fall back to a none policy.
These packets would not be associated with an expected flow (remember
that previously they were encrypted and wrapped in a UDP encapsulation
packet) and so would be dropped.

Instead of configuring the entire network to a use state, smaller portions of
the network were transitioned to a use state and then reconfigured to a
required state. This phased approach minimized the amount of time the
network was in the potentially risky use state while still allowing hosts to
communicate as they reconfigured themselves. Chef calculated the minimum
policy between a pair of hosts based on their preferred state.

Value of a Provider-Agnostic System
It goes without saying that building a provider-agnostic system requires
significant engineering effort. For many systems, this effort may not be
justified. In PagerDuty’s case, the business requirements determined that the
effort was justified. Having this provider-agnostic network in place provided
a significant return on investment when PagerDuty decided to move off one
of its cloud providers. Normally an effort like this would be a several-month
effort with many high-risk change windows.

In PagerDuty’s case, this change was relatively straightforward. It took
roughly six weeks from making the decision to having all production traffic
moved over. The bulk of that time was spent researching new providers,
testing the new provider’s systems, and reworking the Chef automation. The
actual changes were deployed to production in one week during normal
business hours without any customer impact.

Summary
This chapter focused on the considerations that an organization that wants to
move to a zero trust network needs to decide on. Where possible, it gave
real-world recommendations to help readers through making these decisions.

We spent time discussing the importance of understanding the state of the
system using system diagrams and capturing network flows from real
production traffic. Building all the zero trust control plane systems as
standalone services can be a large up-front investment, so practical
alternatives were explored.

The most important detail to remember is that zero trust is an architectural
ideal, so this chapter discussed how to get started down the path by defining
and capturing policy in a manner that can be later reused. It explored putting
in place authentication proxies that can incorporate systems that aren’t
directly compatible with zero trust. It also explored whether organizations
should start with client/server interactions or server/server interactions.

Finally, to help readers see how this type of endeavor played out in other
organizations’ systems, this chapter explored two concrete case studies.
These case studies explored the particular approaches and trade-offs that
were made to make zero trust a reality in existing production networks.

The next chapter focuses on how a hypothetical attacker might try to thwart a
zero trust network.

Chapter 10. The Adversarial
View

The adversarial view assumes that all digital systems are susceptible to
compromise and that malicious attackers will persistently attempt to breach
them. By understanding this approach, we can assess the probability and
ramifications of potential attacks, identify potential vulnerabilities, and
ultimately build robust, resilient, and secure systems.

To effectively defend against potential breaches in a zero trust network,
organizations must understand how attackers may attempt to bypass security
measures. They must also proactively identify weak points to minimize the
risk of a successful attack by identifying the entry points most likely to be
targeted.

With increasingly sophisticated cyberattacks on the rise, organizations have
turned to the zero trust model to protect their systems from malicious
activities. While this approach provides greater protection against data
breaches, organizations must be aware of potential pitfalls, risks, and attack
vectors associated with this model.

In this chapter, we will explore the potential challenges that can arise related
to the zero trust model in greater detail. If you were trying to penetrate a zero
trust network, how might you do it?

Potential Pitfalls and Dangers
Implementing a zero trust model can present challenges in complexity, time,
and cost.

Insufficiently secure authentication measures within organizations can be
exploited by attackers, circumventing their effectiveness. Poorly configured
authentication systems and policies may hinder user experiences and

business productivity. Misconfigurations can introduce security
vulnerabilities, such as unauthorized access due to access protocol and
authentication criteria misconfigurations or lack of auditing. Another concern
is the limited visibility into user activity when relying solely on
authentication measures, potentially leading to a false sense of security.
Additionally, adversaries continue to employ social engineering and phishing
attacks to bypass authentication protocols and gain unauthorized system
access.

The zero trust model is not a silver bullet; attackers are constantly looking
for ways to bypass implemented security controls.

One of the most significant risks associated with zero trust networks is the
potential for exploiting software vulnerabilities or abusing system privileges
to establish unauthorized access. We call these attack vectors.

Attack Vectors
There are a multitude of attack vectors that can be used to bypass a zero trust
network. These include, but are not limited to, social engineering and
credential theft, privilege escalation and lateral movement, distributed denial
of service (DDoS) attacks, zero-day vulnerabilities, and application
exploitation techniques. Table 10-1 summarizes many of these attacks,
including countermeasures.

These attack vectors can potentially disrupt an organization’s operations and
ultimately compromise security. To better understand these threats, let’s
explore each attack vector in greater detail in the next section.

Table 10-1. Common attack vectors and suggested countermeasures

Category Attack vector Description Countermeasure

Identity,
Access, &
Authentication

Insider Threats Attacks by
individuals
with legitimate
network access,
exploiting
privileges.

Continuous
monitoring,
behavioral
analytics, access
controls.

Identity,
Access, &
Authentication

Credential Theft
and Reuse

Accessing the
system using
stolen or reused
credentials.

Multifactor
authentication,
regular password
updates, password
complexity
requirements.

Identity,
Access, &
Authentication

Credential Theft
and Reuse

Using known
username-
password
combinations.

Employ multifactor
authentication and
monitor for failed
login attempts.

Cloud Security Cloud Security Challenges in
securing cloud
environments
with zero trust.

Implement proper
cloud
configuration,
identity and access
management (IAM)
policies, and use
native cloud
security tools.

Category Attack vector Description Countermeasure

Cloud Security Misconfigurations Incorrect
configurations
exposing data
or granting
excessive
access.

Security audits,
configuration
management tools,
automated
vulnerability
scanning.

Data Handling Data Exfiltration Techniques to
steal sensitive
data from the
network.

Employ data loss
prevention (DLP)
tools and monitor
outbound traffic.

Device Trust Untrusted
Computing
Platform

Foundational
platform
vulnerabilities.

Ensure devices
meet security
standards before
granting access.

Device
Vulnerabilities

Internet of Things
Vulnerabilities

Many IoT
devices lack
robust security.

Regularly update
IoT device
firmware and
change default
credentials.

Exploits &
Vulnerabilities

Zero-Day
Vulnerabilities

Unknown
vulnerabilities
without
available
patches being
exploited.

Regular updates,
intrusion detection
and prevention
systems, network
segmentation.

Category Attack vector Description Countermeasure

Infrastructure
& Network
Security

DDoS Attacks Overwhelming
a network or
site with traffic.

Use advanced
DDoS protection
services and
maintain
diversified network
resources.

Infrastructure
& Network
Security

Man-in-the-
Middle (MitM
Attacks)

Intercepting
communications
can
compromise
data.

Use end-to-end
encryption and
secure
communication
protocols.

Infrastructure
& Network
Security

Control Plane
Security

Traffic
manipulation by
compromising
control routing.

Secure and monitor
control plane and
utilize network
monitoring tools.

Infrastructure
& Network
Security

Endpoint
Enumeration

Identifying
devices or
users within a
network.

Implement network
cloaking, segment
networks, and
restrict responses
to unidentified
queries.

Social
Engineering &
Human Factors

Physical
Coercion

Forcing
individuals to
perform
unwanted
actions through
physical
threats.

Physical security
measures,
awareness training,
and duress codes.

Identity and Access
Within identity, there are two main types of threat: credential theft and
privilege escalation.

Category Attack vector Description Countermeasure

Session &
Data Handling

Invalidation Bypassing
security
measures by
invalidating
tokens or
sessions.

Time-limited
sessions, prompt
for re-
authentication for
critical actions.

Session &
Data Handling

Session Hijacking Attackers take
over a valid
user session.

Use encrypted
sessions, regularly
renew session
tokens, and prompt
for re-
authentication for
critical actions.

Social
Engineering &
Human Factors

Phishing and
Social
Engineering

Deceptive
tactics tricking
individuals into
revealing
sensitive data
or actions.

Security awareness
training, multifactor
authentication,
email security.

Third-Party
Risks

Supply Chain
Attacks

Compromising
third-party
vendors or
software to gain
access.

Vendor risk
assessments,
security audits,
application-
allowed listings.

Credential Theft
Practically all of the decisions and operations performed within a zero trust
network are made on the basis of authenticated identity. In Chapter 6, we
discussed the difference between informal and authoritative identity, such as
the difference between your “human” identity and your government identity.
Computer systems implement authoritative identity similarly to the way
governments do—and similarly to the way your government identity can be
stolen, so can your identity within a computer system.

If your identity is stolen or compromised, it might be possible for an attacker
to masquerade their way through the zero trust authentication and
authorization checks. This is, of course, extremely undesirable. Since identity
in a computer system is typically tied to some sort of “secret” that is used to
prove said identity, it is extraordinarily important to protect those secrets as
well as we can.

These secrets can be protected in different ways, based on the type of
component the identity belongs to. Careful consideration should go into
choosing which methods to use for which components. We discussed
different ways to approach this problem in previous chapters.

Since a zero trust network authenticates both the device and the
user/application, it is necessary for an attacker to steal at least two identities
in order to gain access to resources within it, raising the bar compared to
traditional approaches in use today. These concerns can be additionally
mitigated through the use of trust engine behavioral analysis.

While securing identity is a widespread industry concern, and is not specific
to zero trust, its importance is large enough to justify calling it out as
something that should be carefully handled, despite the fact that the zero trust
model works to naturally mitigate this threat.

Privilege Escalation and Lateral Movement
Privilege escalation is a common attack vector and refers to an attacker using
various techniques, such as hijacking user sessions, abusing system

privileges, malicious code injection, or exploiting misconfigurations in
authentication systems, to elevate access to a user account with a higher level
of privilege. One example could be an attacker gaining access to an admin
account, or a standard user account with administrative access. The attacker
could then leverage this privileged account to laterally move about and
across the network. By gaining access via this attack vector, attackers can, as
you can already imagine, cause serious damage and wreak havoc.

SCENARIO: PRIVILEGE ESCALATION AND LATERAL
MOVEMENT—SIMULATED ATTACK

This scenario demonstrates a realistic attack vector wherein an attacker
initially gains access to a cloud environment through a phishing attack
and subsequently leverages compromised administrative credentials to
pivot laterally into the organization’s on-premises network, escalating
privileges along the way.

Let’s walk through this scenario using a fictional company called Bases
Loaded, Inc. (BSL):

1. Initial compromise: The attacker, using social engineering tactics,
sends a phishing email to an employee, Alex, at BSL. The email
appears to be from the company’s IT department, claiming an urgent
security update and providing a link to a seemingly legitimate login
page.

2. Phishing attack: Alex, unaware of the phishing attempt, clicks on
the link and is directed to a convincing login page that mirrors
BSL’s official login portal. Believing it to be genuine, Alex enters
their credentials, unwittingly providing the attacker with their
username and password.

3. Cloud account access: Armed with Alex’s credentials, the attacker
gains access to Alex’s cloud account. In this case, the attacker
discovers that Alex has administrative privileges within BSL’s
cloud environment.

4. Privilege escalation: The attacker leverages administrative
privileges to escalate their access. They identify an administrative
cloud account linked to BSL’s Azure Active Directory (Azure
AD/Entra ID). By exploiting security misconfigurations or
vulnerabilities within the cloud environment, the attacker
successfully breaches the administrative cloud account belonging to
a user named Jane, who has elevated privileges.

5. Lateral movement to the on-premises network: With control over
Jane’s administrative cloud account, the attacker explores the
organization’s resources, discovering that BSL uses a hybrid setup
with on-premises Active Directory and cloud services.

6. Exploiting the hybrid setup: The attacker also discovers that BSL
synchronizes its on-premises AD to its Azure AD/Entra ID. Using
the administrative privileges acquired from Jane’s cloud account,
the attacker abuses the trust relationship to access and move
laterally into BSL’s on-premises network.

7. Compromising the Active Directory: Once inside the on-premises
network, the attacker finds that they can compromise BSL’s Active
Directory, potentially gaining access to sensitive user data,
corporate applications, and critical infrastructure.

BSL may have prevented this attack through security awareness training
that would help the employees of BSL recognize phishing attempts by
implementing phish-resistant multifactor authentication (MFA) for all
accounts, using cloud-only accounts (accounts sourced only in the cloud
and not synced back on premises) for cloud administration, conducting
regular security audits, and/or maintaining up-to-date security
configurations for both its cloud and on-premises environments.

Infrastructure and Networks
Infrastructure and networks are foundational in information technology and
serve as the backbone for data flow and communication. These elements
encompass the physical and virtual resources that facilitate connectivity, data
transfer, and management across various platforms and devices. While
crucial for seamless operations and connectivity, they also present unique
security challenges.

Control Plane Security

Control plane security involves the protection of systems and processes that
control the routing and forwarding of data, and plays a pivotal role in
ensuring the safe and efficient functioning of network operations and
safeguarding against unauthorized access and malicious attacks.

We discuss many control plane services throughout this book, responsible for
things like policy authorization and tracking inventory. Depending on needs, a
zero trust control plane can comprise a nontrivial number of services, all of
which play a crucial role in ensuring authorization security throughout the
network. A natural question follows: how can you protect your zero trust
control plane systems, and what happens if one is compromised?

Well, it’s not good, that’s for sure! It is possible to completely undermine the
zero trust architecture if a control plane compromise is pervasive enough. As
such, it is absolutely critical to ensure the security of these systems. This is
not a weakness unique to the zero trust model—it exists today even in
perimeter networks. If your perimeter firewall is compromised, what is the
impact? As such, the concern is great enough to warrant a discussion.

SCENARIO: CONTROL PLANE SECURITY AND THE
IMPLICATIONS OF AN ATTACK

Imagine our technology environment as a bustling airport. The control
tower represents our control plane—the nerve center that manages and
directs the movement of planes on the runways and in the airspace. This
control tower holds immense power, determining which planes can take
off, land, or taxi.

In our digital landscape, the control plane serves a similar purpose. It
manages the access, permissions, and configurations of our systems and
networks. When our control plane is secure, we can trust that only
authorized individuals and processes have the permissions they need. It’s
like giving the right pilots access to the right planes at the right time.

However, consider the chaos that would ensue if the control tower at an
airport were compromised. Unauthorized personnel could grant takeoff
clearance to an aircraft without proper checks. Similarly, if our control
plane is not adequately secured, it becomes a potential target for
attackers. They could exploit vulnerabilities to manipulate permissions,
grant unauthorized access, or redirect critical processes.

The implications are far-reaching:

Data breaches

An insecure control plane could lead to unauthorized
access to sensitive data, putting customer information,
financial data, and intellectual property at risk.

Service disruption

Just as a compromised control tower could disrupt flights,
an attacker manipulating the control plane might disrupt
our services, causing downtime and financial losses.

Lateral movement

Without proper control plane security, attackers could
pivot from one area of our environment to another,
escalating their access privileges and infiltrating deeper
into our network.

Regulatory non-compliance

Depending on our industry, insufficient control plane
security could lead to compliance violations, resulting in
hefty fines and reputational damage.

By prioritizing control plane security, we are fortifying our
organization’s control tower by ensuring that only authorized processes
and individuals can access our critical systems and data. We are also
minimizing the risk of unauthorized changes and manipulations that could
lead to substantial breaches.

Control plane security can begin through traditional means, providing very
limited network connectivity and strict access control. Some control plane
systems are more sensitive than others. For instance, compromising a data
store housing historical access data is, strictly, less useful to an attacker than
compromising the policy engine. In the former case, an attacker may be able
to artificially raise their level of trust by falsifying access patterns, whereas
the latter leads to a complete compromise of zero trust authorization,
allowing the attacker to authorize anything they please.

For the most sensitive systems (i.e., the policy engine), rigorous controls
should be applied from the beginning. Requiring group authentication and
authorization in order to make changes to these systems is a real option and
should be heavily considered. Changes should be infrequent and should
generate broadly seen messages or alerts. It should not be possible for a
control plane change to go unnoticed.

Another good practice is to keep the control plane systems isolated from an
administrative standpoint. Perhaps that means they live in a dedicated cloud
provider account or are kept in a part of the datacenter that has more rigorous

access control. Doing this allows access to be more carefully audited and
minimizes the risk presented to control plane systems by their administrative
facilities. Isolating these systems administratively does not mean that they are
logically isolated from the rest of the network.

Despite administrative isolation, it is important that control plane systems
participate in the network just as any other service does. Attempts to isolate
them can quickly lead back to a perimeterized design, which can be
considered the worst-case scenario for zero trust control plane security.

As the network matures, zero trust enforcement can be slowly applied to the
control plane systems themselves. Kind of like rewriting the C compiler in C,
backing zero trust enforcement into the control plane ensures that tight
security is applied homogeneously throughout the network and that there are
no special cases. The propensity to introduce a chicken-and-egg problem
should not deter you from this approach. Such problems are manageable and
can usually be worked through if sufficient thought is put into them. The
alternative (putting control plane systems in a perimeter network) would
leave these systems the least protected of all, and is generally unacceptable
in the context of a zero trust network.

Endpoint Enumeration
The zero trust model lends itself naturally to perimeterless networks since a
perimeter makes much less sense when the internal network is untrusted. The
peer-to-peer nature of perimeterless networks make them generally easier to
maintain than perimeter networks, which frequently include network
gateways and tunnels like VPNs which pose scaling, performance, and
availability challenges.

As a result of this architecture, it is possible for an adversary to build a
system diagram by observing which systems talk to which endpoints. This is
in contrast to architectures that leverage network gateways like VPNs, since
an adversary observing VPN traffic can’t see conversations with endpoints
beyond the VPN gateway. It should be noted that this advantage is lost as

soon as the traffic crosses the gateway—a classic property of the perimeter
model.

It is here that we make a distinction between privacy and confidentiality. The
zero trust model guarantees network confidentiality, but not privacy. That is,
ongoing conversations can be observed and asserted to exist; however, the
contents of the conversation are protected. Systems that provide network
privacy attempt to obscure the fact that the conversation happened at all. Tor
is a popular example of a system that provides network privacy. This is a
wholly different problem space and is considered out of scope for the zero
trust model.

If a limited form of privacy over public networks is desired, tunneling traffic
through site-to-site tunnels is still an option in zero trust networks. This
deployment will make it more difficult to see which individual hosts are
communicating on either side of the tunnel. We should be clear that this
additional privacy protection should not be considered critical to the
network’s security. In fact, in some ways it undermines the zero trust model
itself, as hiding information in one part of the network and not another
suggests that one is more trusted than the other.

Untrusted Computing Platform
We covered this in Chapter 5, but it’s important to reiterate that zero trust
networks require the underlying computing platform to be a trustworthy
system. There’s a distinction to be made here between the computing
platform itself (think cloud hardware, virtual machine hypervisor) being
trusted and the “device” being trusted. Oftentimes these two systems are
conflated, but the attacks against each are subtly different due to their
differing privilege levels.

Totally defending against untrustworthy computing platforms is practically
impossible. Consider a system that uses hardware that purposefully generates
weak random numbers (which encryption systems depend on). Defending
against that type of attacker would first involve detecting the problem, though

this alone might be impossible if the attacker hides their capability most of
the time.

Despite our inability to guard against a truly malicious, untrusted computing
platform, zero trust systems can still guard against simpler attacks against the
platform. Encrypting persistent data and swapped-out memory pages will
mitigate simpler attacks by malicious peers on the computing platform. It will
also obviate the need for trust in the platform’s operators and, therefore, is
recommended.

Distributed Denial of Service (DDoS) Attacks
A zero trust network is primarily concerned with authentication,
authorization, and confidentiality, all generally affected by tight control of
access to all network resources. While the architecture strives to authenticate
and authorize just about everything on the network, it does not provide good
mitigation against denial-of-service (DoS) attacks on its own. Distributed
DoS (DDoS) attacks that are volumetric in nature can be particularly
troublesome.

Just about any system that can receive packets is vulnerable to volumetric
DDoS, even those employing zero trust architecture. Some implementations
“darken” internet-facing endpoints through the use of pre-authentication
protocols. We spoke a little about these in “Bootstrapping Trust: The First
Packet”, the basic premise being to hide those endpoints behind a deny-all
rule, adding narrow exceptions based only on signaling. While this method
goes a long way in helping to keep the endpoint addresses obscured, it does
not fundamentally mitigate DDoS attacks.

A zero trust network, by nature, retains a great deal of information about
what to expect on the network. This information can be used to calculate
policy for more traditional traffic filtering defenses far upstream. For
instance, perhaps only a few systems in the network actually communicate
with the internet. In this case, we can use the policy to calculate coarse
enforcement rules from the perspective of an upstream device, applying very

broad enforcement with few exceptions. The advantages of this approach
over the typical approach are twofold:

The configuration is fully automated.

The traffic filtering mechanisms can remain stateless.

The second advantage is quite a large one, since it obviates the need for
expensive hardware and complicated state replication schemes. In this way,
these filtering devices act more like scrubbers than firewalls. Of course, this
only makes sense if you operate a large network. If you have a few racks in a
co-location facility, or are cloud native, you might prefer to leverage an
online DDoS-prevention service.

The short of it is, DDoS is still a problem in the zero trust world, and while
we might have a few new clever ways to address it, it will still require
special attention.

Man-in-the-Middle (MitM) Attacks
Man-in-the-Middle (MitM) attacks pose a significant challenge in
cybersecurity. While zero trust networks prioritize strong authentication,
careful authorization, and strict control over network resource access, they
may not offer solid protection against MitM attacks.

MitM attacks exploit vulnerabilities in communication channels, allowing
attackers to intercept and manipulate data between two parties without
detection. Even zero trust environments can be compromised, which means
extra precautions are required when using VPNs, cloud services, and remote
access tools, as these technologies are prone to MitM attacks. While zero
trust networks do their best to hide endpoints and closely manage network
actions, these measures might only partially stop a sophisticated attack.

The good news is that the insights gathered from these networks can both
make our defenses stronger and be used to find efficient ways of sorting
through incoming traffic. Think of it this way: networks that follow the zero
trust approach show patterns in how they communicate, so we can then

leverage these patterns to set clear rules on device communication,
minimizing the risks of MitM attacks.

This approach has two benefits: automatic rule configuration and the ability
to use stateless traffic filtering. This is important because it means that we
don’t need to keep track of everything or use expensive hardware. The one
caveat is that this solution is better suited to large networks. If the network
environment involves limited infrastructure or cloud-based operations, an
online MitM solution might be better.

While innovative approaches can potentially mitigate MitM attacks, unique
strategies and vigilance are also necessary. Organizations must continue to
invest in technologies that detect suspicious activity, implement strong
authentication protocols, and regularly evaluate endpoints for vulnerabilities
to minimize the risk of malicious actors accessing restricted information.

More information on MitM may be found here.

Invalidation
Invalidation is a hard problem in computer science. In the context of a zero
trust network, invalidation applies chiefly to long-running actions that were
previously authorized but are no longer.

The definition of an action is largely dependent on your chosen authorization
processes. For instance, if you authorize access on a request-by-request
basis, an action would be considered to be a single application-level
request/operation. If, on the other hand, you authorize network flows (like a
TCP session) instead of application requests, an action would be considered
to be a single network session.

How quickly and effectively ongoing actions can be invalidated deeply
affects security responses. It is important to gauge how much risk you’re
willing to tolerate in this area as you design your zero trust network, since
the answer has the potential to significantly affect how you might approach
certain problems. For instance, if a new TCP session is the action being
authorized, and some services maintain TCP sessions for multiple days on

https://oreil.ly/fD0Vw

end, is it acceptable to say that an entity with revoked credentials might
retain access for that long? Maybe not.

Luckily, we have some tools in our chest to address this problem. First, and
perhaps most obvious, is to perform more granular authorizations on actions
that are short-lived. Perhaps this means that the enforcement component
authorizes application-level requests instead of new network sessions. While
it is still possible to have long-running application requests, they are in
practice less frequent than long-running network sessions.

Another approach, although it is somewhat naive, is to periodically reset
network sessions, enforcing a maximum lifetime. When the application/client
reconnects, it will be forced back through the authorization process.

The best approach, though, is to teach the enforcement component to track
ongoing actions, and rather than reset them after a period of time, send
another authorization request to the policy engine. If the policy engine
decides that the action is now unauthorized, the enforcement component can
forcibly reset it.

As you can see, these mechanisms still rely on a “pull” model, in which the
enforcement component is forced to periodically reauthorize. As a result,
sessions can only be invalidated as fast as the longest polling period
configured in the enforcement component. While invalidation is best done as
a push or event-based model, those approaches come with additional
complexities and challenges that perhaps outweigh the benefits. Regardless,
it can be seen that the problem is (at the very least) addressable.

Phishing
Social engineering attacks, which trick trusted humans into taking action on a
trusted device, are still very much a concern in zero trust networks. Whether
they are phishing attacks, which craft written communication that is not
obviously malicious, or they take place via face-to-face communications like
those that customer service departments have had to deal with, a zero trust
network can only do so much to defend against attacks enabled by an
unwitting participant.

For less sensitive resources, behavioral analysis of internal activity is the
mechanism used to guard against this threat. That analysis is coupled with
end-user training that teaches users to think like an adversary and be
suspicious of requests that are out of the ordinary.

For more sensitive resources, group authentication/authorization schemes
like Shamir’s Secret Sharing can help mitigate the effects of a single member
of the group causing unintended actions to occur. This scheme can be very
burdensome on a day-to-day basis, so the best plan is to save it for the truly
critical assets. Chapter 6 has more details on these mechanisms for defending
against social engineering attacks.

Physical Coercion
Zero trust networks effectively mitigate many threats in the virtual world, but
threats in the real world are another beast entirely. Valid users and devices
can be effectively coerced to aid an attacker to gain access to a system that
they shouldn’t have access to. Border crossing can often be a place where
government entities have substantial power over an individual who just
wants to get to their destination. And someone with a blunt instrument can
force even the most honest individuals to aid them (as demonstrated in
Figure 10-1).

Figure 10-1. The reality of threats in a system (cartoon by XKCD)

https://oreil.ly/Y0qxZ

The reality is that relying on individuals defending themselves against these
types of compromises in the moment is ill-advised. No security professional
would ever tell someone in this situation to risk their physical well-being to
protect the information that they have access to. Therefore, the best we can
work toward as an industry is to keep only the least sensitive data and
systems vulnerable to the compromise of a single individual. For higher-
value targets, group authorization is an effective mitigation against these
threats.

Subtler physical attacks against individuals (say someone is able to insert a
USB device into an unguarded laptop) are best mitigated by a consistent
process of cycling both devices and credentials. Scanning of unrotated
devices can also help to mitigate these types of attacks.

If someone has physical access to your device, they can do a lot of damage.
However, that statement should not be license to throw our hands up in the
air and not at least try to mitigate these threats, particularly when it comes to
securing data used for zero trust authentication/authorization. There are clear
steps that can be taken to lessen the impact and duration of compromise, even
if someone has physical access to a device, and zero trust networks add those
steps. You can read more about physical device security in Chapter 5.

Role of Cyber Insurance
Cybersecurity insurance, often known as cyber liability insurance, is a
contract that a company can buy to help decrease the financial risks of
conducting business online. From a risk perspective, cyber insurance may be
used to mitigate risk when implementing zero trust or any other security
initiative. The insurance policy transfers some of the risk to the insurer in
exchange for a monthly or quarterly charge. Cyber insurance evolved from
errors and omissions (E&O) insurance, a separate type of insurance that
protects against flaws and deficiencies in a company’s services. In a nutshell,
cyber insurance provides relief in the following circumstances:

When an incident occurs, it acts as a financial safety net for the
company.

It provides customers with assurance that a cyber incident will not force
the company out of business.

It protects against regulatory penalties and third-party legal
consequences, within reason.

The insured entity’s annual revenue and industry determine cyber insurance
pricing. The insurance company usually requires a security audit or
paperwork using an approved evaluation tool, such as that of the Federal
Financial Institutions Examination Council (FFIEC). Many cybersecurity
insurance rules exclude human-caused security vulnerabilities, such as poor
configuration management or negligent handling of digital assets. For more
information on cyber insurance and its market, please read the report on the
cyber insurance market, published by the National Association of Insurance
Commissioners (NAIC).

Summary
This chapter attempts to approach the zero trust network from the opposite
perspective of the administrators of the system. By putting ourselves into the
mindset of a would-be attacker, we can evaluate the system as an adversary
who has vast knowledge of how it is put together.

Some of the attacks against zero trust networks are well mitigated, whereas
for others we are only able to detect the attack, at best. Even a zero trust
network can be compromised by a determined adversary, as the
inconvenience of defending against any theoretical attack is simply too high a
price to pay in the day-to-day operation of such a network.

The reality is that every system is susceptible to an attacker with sufficient
resources. When faced with the most advanced attacks, the best we can hope
for is efficient and accurate detection. Starting from the assertion that a

https://oreil.ly/AjwKn

system has been compromised and working our way backward toward
limiting the damage is a sage strategy that might allow us to sleep soundly.

While the zero trust model certainly introduces some new consideration
points with regard to networked system security, at the same time, it resolves
many more. By applying the power of automation to tried-and-true security
primitives and protocols, the authors are confident that the zero trust model
will rise to replace the perimeter model as a more effective, scalable, and
secure solution to the computer network security problem.

Chapter 11. Zero Trust
Architecture Standards,
Frameworks, and Guidelines

Stephen Paul Marsh originally coined the term “zero trust” in his April 1994
Ph.D. dissertation on computer security, where he mathematically defined
trust and also claimed that the idea of trust transcends a variety of human
traits like morality, ethics, etc. However, it was not until the Forrester report
published in November 2010 that the term zero trust was defined and
articulated within the context of the zero trust security paradigm that we are
familiar with today. Since the publication of that report, a lot has changed in
the digital world: we’ve seen widespread adoption of cloud computing, a
massive shift toward digitization accelerated by a surge in remote work
during and after the COVID-19 pandemic, and the ubiquitous presence of
mobile phones and social media in our daily lives. Also, artificial
intelligence has evolved from a distant promise to a reality and has become
an enormous disruptor to both businesses and individuals.

As a result of technological advances, we are becoming more interconnected,
which has many advantages such as improved communications and quicker
access to resources, but it has the unintended security consequence of
increasing the attack surface area for malicious actors to exploit. This is
evident from the FBI Internet Crime Report, which shows that security and
data-related crimes in 2022 caused losses in excess of 10 billion USD in the
United States alone. As a result, organizations have to pivot away from
conventional security models such as perimeter-based security and adopt a
security philosophy and principles based on zero trust to strengthen their
security posture. Gartner, a prominent research and advisory firm, has
estimated that by 2026, 10% of large enterprises will have a mature and
measurable zero trust program.

https://oreil.ly/dm_z8
https://oreil.ly/VYTo8
https://oreil.ly/nfpXl
https://oreil.ly/k30Nh

This chapter will discuss a variety of zero trust frameworks, standards, and
guidelines published by government organizations, standardization bodies,
and private, public, and nonprofit organizations. The goal is to provide
foundational knowledge and awareness of the prevalent zero trust
architectures, designs, and vocabulary that you will likely encounter while
working on zero trust initiatives.

Finally, while a concerted effort to ensure that coverage of zero trust
publications remains as thorough and current as possible at the time of
writing, it is virtually impossible to include every publication due to the
rapid pace of development in the area of zero trust.

Governments
This section is focused on various zero trust publications released by
government organizations across the globe. These publications not only play
a vital role in the national policy for cybersecurity as a whole, but they also
have an influence on organizations in the private and public sectors.
Table 11-1 shows a list of artifacts published on zero trust by various
governmental organizations worldwide.

Please keep in mind that this collection represents a broad overview of a
dynamic and growing field. Consider it a starting point, and use the resources
listed below to continue to learn about ongoing research.

Table 11-1. Zero trust publications from various government organizations
worldwide

Government
organization Country Publication

National Institute of
Standards and
Technology (NIST)

United States “Zero Trust Architecture”
(NIST SP 800-207)

National Cybersecurity
Center of Excellence
(NCCoE)

United States “NIST Cybersecurity
Practice Guide SP 1800-35
Vol C–D (Implementing a
Zero Trust Architecture)” -
Draft

Department of Defense
(DoD)

United States “Department of Defense
(DoD) Zero Trust Reference
Architecture”

National Security
Agency

United States “Embracing a Zero Trust
Security Model”

Cybersecurity &
Infrastructure Security
Agency (CISA)

United States “Zero Trust Maturity Model”

National Institute of
Standards and
Technology (NIST)

United States “Planning for a Zero Trust
Architecture: A Planning
Guide for Federal
Administrators”

National Cyber Security
Centre

United
Kingdom

“Zero trust architecture
design principles”

https://oreil.ly/n1Dal
https://oreil.ly/ME0_-
https://oreil.ly/FQl81
https://oreil.ly/xknFm
https://oreil.ly/u7Utt
https://oreil.ly/EA_4I
https://oreil.ly/775xk

Government
organization Country Publication

Agence nationale de la
sécurité des systèmes
d’information (ANSSI)

France “Le modèle Zero Trust”

Singapore Government
Developer Portal

Singapore “Government Zero Trust
Architecture” (GovZTA)

Canadian Centre for
Cyber Security

Canada “Zero Trust security
model”—ITSAP.10.008

Government
Communications
Security Bureau

New Zealand “Information Security
Manual-Zero trust”

United States
The United States has taken a leading role in the release of an array of zero
trust artifacts, including architecture guidelines, capability maturity models,
and other strategic reports.

Executive Order (EO) 14028—Improving the Nation’s
Cybersecurity
On May 12, 2021, the president of the United States issued the major
executive order “Executive Order (EO) 14028—Improving the Nation’s
Cybersecurity”, highlighting the imperative need to overhaul the security
practices of all US government agencies with zero trust architecture as the
foundation. The order specifically calls for the planning and implementation
of a zero trust architecture in accordance with NIST and DoD guidelines; the
relevant portion of the order is shown here:

https://oreil.ly/-oWPW
https://oreil.ly/ZrqP0
https://oreil.ly/PYlft
https://oreil.ly/y9Dvm
https://oreil.ly/h49p2

“[E]ach agency shall develop a plan to implement Zero Trust
Architecture, which shall incorporate, as appropriate, the migration
steps that the National Institute of Standards and Technology (NIST)
within the Department of Commerce has outlined in standards and
guidance, describe any such steps that have already been completed,
identify activities that will have the most immediate security impact, and
include a schedule to implement them.”

The executive order was later followed by a memorandum titled “Moving the
U.S. Government Toward Zero Trust Cybersecurity Principles”, which was
released on January 26, 2022. This memorandum reinforced the move toward
the zero trust architecture but also outlined the strategy for government
agencies to meet specific cybersecurity standards and goals by the end of
fiscal year 2024 (which ends on September 30th, 2024). Both the executive
order and the memorandum make significant references to NIST, CISA, and
the DoD’s publications on zero trust, which are covered in detail in the
subsequent sections. However, here are the key business scenarios mentioned
in the memorandum that must be supported by the zero trust strategy:

Federal staff have enterprise-managed accounts, allowing them to
access everything they need to do their job while remaining reliably
protected from even targeted, sophisticated phishing attacks.

The devices that federal staff use to do their jobs are consistently
tracked and monitored, and the security posture of those devices is taken
into account when granting access to internal resources.

Agency systems are isolated from each other, and the network traffic
flowing between and within them is reliably encrypted.

Enterprise applications are tested internally and externally, and can be
made available to staff securely over the internet.

Federal security teams and data teams work together to develop data
categories and security rules to automatically detect and ultimately
block unauthorized access to sensitive information.

https://oreil.ly/VHrX_

HOW TO NAVIGATE THE US GOVERNMENT?
You can find a high-level U.S. government chart by visiting the United States organizational chart
and a full list of US government departments and agencies at the A-Z index of US departments and
agencies. Some readers may find it intriguing that the US legislative branch also has the United
States Botanic Garden as a federal agency directly underneath it, mostly for historic reasons.

National Institute of Standards and Technology (NIST)
NIST released a special publication, SP 800-207, on zero trust architecture
(ZTA) in August 2020. It primarily targets architects as an audience, offering
an in-depth understanding of zero trust architecture, definitions, use cases,
threats, and a roadmap for migrating toward zero trust architecture. It is
important to highlight that the publication is vendor agnostic and makes a
conscious choice not to provide vendor-specific implementation guidance.
NIST primarily relies on the National Cybersecurity Center of Excellence
(NCCoE) to provide blueprints for ZTA implementations with the assistance
of vendors active in that domain, as ZTA implementations invariably involve
vendor participation in real-world scenarios. NCCoE’s zero trust
publications are discussed later in this chapter.

In this section, you will learn the fundamental concepts of zero trust
architecture as laid out by the NIST, including its logical components,
deployment variations, the role of the trust algorithm, and threats to ZTA. Our
goal is to cover topics from the publication in adequate detail to provide you
with a firm grasp of ZTA, but we do encourage you to thoroughly study the
publication for additional information, because covering every single topic
in detail from the publication is beyond the scope of this book.

Zero trust/zero trust architecture definition
NIST defines zero trust (ZT) as “a cybersecurity paradigm focused on
resource protection and the premise that trust is never granted implicitly
but must be continually evaluated,” and it further elaborates that zero trust
operationally is “a collection of concepts and ideas designed to minimize
uncertainty in enforcing accurate, least privilege per-request access

https://oreil.ly/SzlWl
https://oreil.ly/ZPW1n
https://oreil.ly/uhL5M
https://oreil.ly/wQyur

decisions in information systems and services in the face of a network
viewed as compromised.”

Finally, NIST goes on to define zero trust architecture as “an enterprise’s
cybersecurity plan that utilizes zero trust concepts and encompasses
component relationships, workflow planning, and access policies.”

The key tenets of zero trust can be summed up as follows:

Always assume breach/compromise

Always enforce least privilege access

Always enforce per-request/session access

Always enforce precise/just enough access

Always apply access policy that is dynamic in nature

Always include all computing services in the system, including the data
sources, as resources that need protection

Always monitor all resources on a continuous basis to evaluate their
security posture and adjust access policies dynamically based on the
threats

Never grant implicit access based on network location alone

THINKING ABOUT RESOURCE ACCESS HOLISTICALLY
The NIST guidance stresses the need to think more broadly about securing resource access, which
should include securing access to devices, services, identity, etc., and that zero trust should not be
limited to data access alone.

Zero trust architecture—logical components
ZTA logical architecture is divided into two basic building blocks: core
components and data sources. The core components appear at the center of
Figure 11-1, within the border, and communicate via a combination of the

control plane and the data plane. It is important to note that this model may be
translated into physical infrastructure in a variety of ways, as these
components may be situated on premises, in the cloud, or both, depending on
enterprise infrastructure requirements.

Figure 11-1. Logical components of ZTA

The ZTA’s core components are defined in Table 11-2, along with a brief
description of their purpose and interaction with other components.

Table 11-2. ZTA core components

ZTA core
component Description

Policy engine
(PE)

The policy engine (PE) resides in the control plane and
acts as the brain, deciding whether to allow, deny, or
revoke access to a resource for a specific subject
(human or nonhuman identities). The PE relies heavily
on various external inputs (see Table 11-3) and the
trust engine for decision making. The PE engages with
the policy administrator, which is in charge of ensuring
that the PE’s decisions are actually enforced.

Policy
administrator
(PA)

The policy administrator (PA) resides in the control
plane and is responsible for establishing or terminating
the communication route between a subject and a
resource. It depends on the PE to make decisions
(grant, refuse, or revoke) and then communicate with
the policy enforcement point to enforce the decision.

Policy decision
point (PDP)

The PE and PA are logically combined into the policy
decision point (PDP). However, the decision to
combine PE and PA into a single component or to
maintain their separation into two logical components
is really a matter of implementation.

ZTA core
component Description

Policy
enforcement
point (PEP)

This policy enforcement point (PEP) is responsible for
establishing, terminating, and monitoring connections
between a subject and a resource. The PEP
communicates with the PA to evaluate the access
requests, as they are received from the subject, and to
obtain and enforce the policy decisions that come back
from the PA. The PEP can be a single logical
component, or it can be divided into two distinct
components: a client-side component, such as an agent
running on a device, and a resource-side component,
such as a gateway component that resides in front of
the resource and enforces access. See “Zero trust
architecture—deployment variations” for more
information on PEP placement.

Subject The subject may be a human or nonhuman entity, such
as an end user, service, application, API, etc., that
requests access to resources.

System The subject interacts with the system, and the system
must verify the subject’s identity as well as carry out
authentication and authorization. The system can be a
device such as a laptop, mobile phone, virtual
machine, container, etc., and the subject may be a
human using a laptop or a nonhuman such as a cron job.
The system depends on PEP to allow communication
with the resource.

ZTA core
component Description

Enterprise
resources

Enterprise resources comprise a wide range of
resources that enterprises want to secure—
applications, services, databases/data lakes,
processes, printers, networks, APIs, and so on. These
enterprise resources can be on premises, in the cloud,
or a hybrid of both.

Untrusted/trusted Untrusted means there is no implicit trust, and the
system must verify the subject and ensure that the
access request is valid. The PDP makes the necessary
decision to enable or deny the subject’s access to the
resource, and the PEP enforces it. Trusted implies that
all traffic beyond the PEP shares the same degree of
trust. Also, the PEP, at the direction of the PA, may
revoke the already established communication between
the subject and the resource at any moment, as trust is
not perpetual and is contingent on a variety of factors
(e.g., external threat intelligence, etc.).

Aside from the core components, we have a variety of data sources that help
provide a range of input for the policy engine and assist it during decision
making while evaluating the access request. Table 11-3 describes these data
sources, along with an explanation of their role in the ZTA.

Table 11-3. Data sources used by the ZTA

ZTA sources Description

Continuous
diagnostics
and mitigation
(CDM) system

The CDM system is in charge of collecting data on the
current state of corporate assets as well as changes to the
system’s software and hardware setup. The PA uses
CDM to get information about the asset requesting
access, such as its hardware, OS version and security
patch level, etc.

Industry
compliance
system

This system consists of policy rules to ensure that all
necessary enterprise regulations and compliance
standards are met.

Threat
intelligence

Threat intelligence is a feed compiled from internal or
external sources that helps the PE make access
decisions. The dark web is an example of an external
threat intelligence source, as it may contain information
about compromised user accounts. Another example may
be the information from third-party intelligence sources,
which may include newly discovered software
vulnerabilities (such as zero-days) that affect enterprise
assets such as operating systems, software, etc.

Activity logs This system aggregates enterprise-wide networking and
activity logs, capturing a vast multitude of events in real
time or near-real time, and can generate comprehensive
reports on the security posture of enterprise information
systems.

ZTA sources Description

Data access
policy

This is a wide collection of attributes and rules
concerning access to the enterprise resources. These
policies are the starting point for authorizing access to a
resource, as they stipulate the fundamental access
privileges for enterprise accounts and resources.

Enterprise
public key
infrastructure
(PKI)

This system is responsible for issuing and tracking
certificates that the enterprise issues to resources,
subjects, services, and applications. The most prevalent
certificate format used in the industry is X.509; however,
other certificate formats are also used.

Identity (ID)
management
system

This system is in charge of the identity lifecycle
management of enterprise identities. For example, it may
contain all of the relevant information, such as the user’s
legal name, email address, certificates, devices, and
extra information needed for entitlement management,
such as role assignments, access attributes, etc. This
system also makes use of other components, such as
enterprise PKI, to associate certificates with the
identities.

Security
information
and event
management
(SIEM)

This system collects security-related information for
further analysis of enterprise-wide activities. The data is
then used to enhance existing policies and to generate
alerts regarding potential threats to corporate assets. For
instance, it can assist in identifying a pattern or an
anomalous behavior pattern exhibited by a user or
malicious actor who is potentially conducting lateral
movement in the network.

Zero trust architecture—deployment variations

https://oreil.ly/ah9_0

While logical components aid in conceptualizing ZTA components and
interactions, the actual deployment of ZTA may take different variations. This
section briefly describes different deployment variations, as outlined in the
NIST publication, along with their pros and cons. It is also important to note
that within a single enterprise, several variants can exist at the same time;
they are not mutually exclusive, and their usage is primarily dependent on
maturity and business needs.

Device agent/gateway-based deployment
In this deployment model, as shown in Figure 11-2, the PEP is divided into
two components—an agent running on a device and a resource gateway,
which is placed on or in front of the enterprise resource that needs to be
protected (e.g. APIs, databases, etc.).

Figure 11-2. Device agent/gateway-based deployment

Pros

Ideal for enterprises with robust asset/device management,
as agents need to be installed and maintained on the devices.

Cons

Supporting Bring Your Own Device (BYOD) scenarios may be
challenging as there is a high barrier to entry since agent
installation and maintenance on personal devices can be
difficult and costly.

Enclave gateway model
This deployment model, as shown in Figure 11-3, is a variant of the previous
device agent/gateway deployment model. The difference is that the resource
gateway may not exist on or in front of individual resources, but rather at the
boundary of a resource enclave (for example, the entire datacenter is located
behind the resource gateway).

Figure 11-3. Enclave gateway-based deployment

Pros

Suitable for enterprises with legacy applications or those
with on-premises datacenters that cannot accommodate
using separate gateways due to various technical and
functional reasons.

Cons

Since a resource gateway is placed in front of a collection of
resources, it is possible for subjects to view and perform
reconnaissance on resources to which they do not have
access.

Resource portal-based deployment

In this deployment model, as shown in Figure 11-4, the PEP is a singular
component that functions as a gateway for handling access requests. This
model may be used for a single resource or for multiple resources that are
bundled together to serve a specific business function.

Figure 11-4. Resource portal-based deployment

Pros

Does not require agents to be running on all client devices,
which is a key benefit over other models. This approach
eliminates the cost associated with agent installation and
management and is also more conducive to BYOD scenarios.

Cons

As no agent is present on the devices, this approach does not
provide the enterprise with complete visibility or control
over its assets, and as a result, device vulnerabilities may

lead to a lower security posture and expose the resources to
various attacks such as denial-of-service (DoS), ransomware,
etc.

Device application sandboxing
This is another variation of the device agent/gateway-based deployment
model. In this model, as shown in Figure 11-5, the subject’s device runs
enterprise-approved applications in an isolated sandbox environment (such
as a virtual machine, containers, trusted platform module, etc.). Only the
approved applications can communicate with the PEP to request resource
access, and the PEP will deny requests from other applications on the asset.

Figure 11-5. Device application sandboxing-based deployment

Pros

The separation of individual applications, due to the
sandbox, from the rest of the asset is a primary benefit.
Individual sandboxed applications may be protected against
a possible malware infection in the host asset if the asset
cannot be scanned for vulnerabilities.

Cons

Enterprises are required to maintain sandboxed applications
for all client assets. Additionally, the organization must
ensure that every sandboxed application is secure, which
may require more effort than merely monitoring devices.

Trust algorithm
The trust algorithm (TA) is the fundamental process upon which the policy
engine relies when making the resource access decision (grant, deny,
revoke). The TA consumes a variety of data sources, as shown in Figure 11-
6, which include information about subjects, resources, entitlements, activity
logs, and so on. The TA makes the decision, which is captured by PE and
eventually relayed to the PA, which is in charge of carrying it out through the
PEP.

Figure 11-6. Sources used by ZTA trust algorithm

Access request

This is the access request from the subject. The primary
information utilized is the resource requested, although
other information related to the subject and network agent
may also be leveraged (for example, security patch version,
device compliance status, etc.)

Subject database

Database containing attributes related to the identity of the
subject, including but not limited to personally identifiable
information (PII), geo-location, entitlements, etc. This
information is typically stored in the identity management
system.

Asset database

This is the asset inventory database, which contains the
known state of every enterprise-owned and/or
nonenterprise/BYOD of assets, including but not limited to
devices, virtual machines, etc. The state can include
attributes like OS version, firmware version, etc.

Resource requirements

This includes enterprise rules/policies aligned with business
processes and compliance requirements, such as restricting
access based on time/day, geo-location, and requiring higher
authentication (e.g., MFA) based on the data
sensitivity/criticality of the resource.

Threat intelligence

This includes feeds on the most recent threats compiled
from various sources, such as the dark web, third-party

sources such as Common Vulnerabilities and Exposures
(CVE), operated by the MITRE corporation, etc.

When implementing the TA, organizations can take a variety of approaches.
At a high level, there are two key factors to consider, as described by the
NIST. First, how should the TA evaluate various input sources? Second, how
is the access request evaluated by the TA?

Let’s examine each of these separately.

Evaluation of input sources by the trust algorithm
When evaluating various input sources, the TA can utilize two distinct
approaches. A criteria-based approach is one in which the TA maintains a
list of qualifying criteria or attributes for resource access. The TA evaluates
each factor as a binary (such as yes/no) decision based on a set of criteria.
When all criteria are met, only then is access granted. Another approach is to
calculate a score/confidence level based on enterprise-specified data source
values and weights against each factor. In this approach, the TA performs an
evaluation and grants access only if the confidence level or score exceeds the
resource’s predetermined threshold (e.g., high, medium, or low; or it can be a
discrete value within a range like 1–10). If not, the request is either denied or
access is restricted.

The benefit of a criteria-based approach is that enterprises may be able to
leverage existing access policies that have well-defined criteria for resource
access based on various factors. Rather than starting from scratch, this gives
a low barrier to entry and a starting point for TA implementation. However,
on the flip side, because policies are based on predefined criteria and are
typically static in nature, organizations may find it difficult to change them
dynamically and quickly enough to address security issues as they arise. In
contrast, with a score/confidence level approach, weights/thresholds can be
changed dynamically, hence adapting to security challenges more quickly.
However, determining the initial weights/thresholds requires maturity as
well as time for tuning because the values may be less optimal at first and
require testing and adjustments, resulting in a suboptimal experience initially

(e.g., users being asked to perform MFA every time due to weights that
haven’t yet been adjusted).

Evaluation of access request by the trust algorithm
Regarding how the TA should evaluate access requests, there are two
possible approaches highlighted by the NIST: singular and contextual. With
the singular approach, each access request is handled independently, and the
evaluation of the request does not factor in the subject’s and network agent’s
prior access requests and outcomes. The contextual approach, in contrast,
takes them into account.

The singular approach does provide speedier request evaluations; however,
there is a risk that an attack may go unnoticed as long as it remains within the
boundaries of a subject’s/network agent’s approved role/entitlements, since
any other context information based on historic patterns of prior requests is
out of scope and not considered during the request evaluation. On the other
hand, the contextual approach provides a far more robust security posture
because trends (such as lateral movement, for example) can be discovered
because the subject’s and network agent’s history is available during the
access request evaluation, and broader context is available for the TA.
However, the TA is required to maintain the subject’s/network agent’s history
and state information. This may incur additional costs, and until the history is
established, performance may not be optimal.

Threats
Enterprises that adopt and implement ZTA should be aware of the various
types of threats to ZTA and potential methods for addressing them, as
published by the NIST. These threats are briefly summarized in Table 11-4,
along with a list of the ZTA components they affect and the proposed
mitigation strategies.

Table 11-4. Summary of threats to ZTA with proposed mitigation strategies

Potential threat
to ZTA

Description of
threat

Impacted
components

Mitigation
strategies

Subversion of
ZTA decision
process

Inadequate
configurations of
the PE and PA
may lead to
disruption of
enterprise
operations as a
whole. In ZTA,
enterprise
components will
be unable to
communicate
without the PE
and PA.

Policy engine,
policy
administrator

Monitoring,
logging and
auditing,
configuration
management

Denial-of-service
or network
disruption

A DoS attack or
lack of network
availability can
disrupt or deny
access to the PEP,
PA, and PE, and
negatively affect
enterprise
operations.

Policy engine,
policy
administrator,
policy
enforcement
point

Resiliency

Potential threat
to ZTA

Description of
threat

Impacted
components

Mitigation
strategies

Stolen
credentials/insider
threat

Malicious actors
utilizing social
engineering or
other attacks on
company
employees can
obtain and utilize
credentials and
then use them to
access
certificates,
secrets, data, etc.
Similar risks
arise from insider
threats when an
employee goes
rogue.

Identity (ID)
Management
System, PKI,
data access
policy ,
continuous
diagnostics
and mitigation
(CDM) system

Contextual
trust algorithm
(TA) for
detecting and
stopping
anomalous
behavior,
logging and
auditing,
monitoring

Visibility on the
network

Due to network
traffic that may
not be
appropriately
logged and
detected (e.g., at
layer 3),
malicious actor
behaviors on the
network, such as
lateral movement,
may go
undetected.

Activity logs,
security
information
and event
management
(SIEM) system

Metadata
analysis for
detecting
malware
communication
patterns,
machine
learning, deep
packet
inspection

Potential threat
to ZTA

Description of
threat

Impacted
components

Mitigation
strategies

Storage of system
and network
information

An attacker may
target the crucial
networking data
and related assets
kept by SIEM and
CDM systems,
data access
policy, and other
components. PE
policy rules can
potentially reveal
useful
information about
the nature of PE
policies to
attackers.

CDM system,
industry
compliance,
activity logs,
data access
policy, PKI,
identity and
access
management,
SIEM system,
policy engine,
policy
administrator

Strict access
policies
enforcement

Potential threat
to ZTA

Description of
threat

Impacted
components

Mitigation
strategies

Reliance on
proprietary data
formats or
solutions

When it comes to
processing and
storing
information
related to
subjects, assets,
and threat
intelligence,
enterprises may
become reliant on
proprietary
standards from a
handful of
vendors. This
inadvertently
leads to
interoperability
challenges, higher
operational costs,
and even service
disruption if the
enterprise
decides to switch
vendors for any
reason.

CDM system,
industry
compliance,
activity logs,
data access
policy, PKI,
identity
management
system, SIEM
system, policy
engine, policy
administrator

Uses industry
or open
standards,
avoids
proprietary
standards,
analyzes
cost/time
impact of
switching
vendors, and
conducts
supply chain
risks analysis
before
selecting
vendors

Potential threat
to ZTA

Description of
threat

Impacted
components

Mitigation
strategies

Use of non-person
entities (NPEs) in
ZTA
administration

When using a
non-person entity
(NPE) like a
machine/device,
there is a
possibility of
false positives as
well as false
negatives owing
to access
patterns.
Furthermore,
NPEs often
cannot conduct
MFA, which
introduces further
identity-related
risks like
spoofing, etc.

Policy engine,
policy
administrator

Performs
continuous
activity
analysis for
NPEs and
catches and
fixes errors
(e.g., false
positives)

National Cybersecurity Center of Excellence (NCCoE)
The NCCoE is a nonregulatory federal organization in the United States and
part of the NIST’s information technology laboratory. The NCCoE
collaborates across multiple sectors, including private industry, government
agencies, and academia, in order to publish security solutions based on
industry standards for organizations of all sizes.

At the time of this writing, the NCCoE is working on a project called
“Implementing a Zero Trust Architecture” that intends to give practical
examples of the zero trust principles defined in NIST’s SP 800-207 “Zero
Trust Architecture” publication. As part of the project, the NCCoE has

https://oreil.ly/Nh18V
https://oreil.ly/Bbchp
https://oreil.ly/FODOU

published a new guide titled “NIST SP 1800—Implementing a Zero Trust
Architecture” in collaboration with a variety of commercial vendors that
offer zero trust products and services. This comprehensive guide has been
divided into five volumes to accommodate a variety of audiences. Table 11-5
provides an overview of all five volumes as well as a brief description of
each guide along with its intended audience.

Table 11-5. Listing of various volumes published as part of NIST’s “SP-
1800 Implementing a Zero Trust Architecture” project

Volume Publication Description Audience

35A “Executive
Summary” (2nd
Preliminary
Draft)—SP-
1800

This document
summarizes the
objectives behind
the SP-1800 series
of publications, the
key challenges
addressed by the
NCCoE, the
approach adopted
to solve these
challenges, and the
relevance of this
guide to
enterprises.
Since the focus of
the SP-1800 series
is on the
implementation of
zero trust, it also
describes how the
NCCoE and its
collaborators are
utilizing
commercially
available
technology to
develop
interoperable, open
standards-based
ZTA

CISOs, CTOs,
IT
professionals,
or anyone in a
decision-
making role.

https://oreil.ly/hFNqZ

Volume Publication Description Audience
implementations
that adhere to the
key principles
specified in the
NIST zero trust
architecture
publication.

35B “Approach,
Architecture,
and Security
Characteristics”
(2nd
Preliminary
Draft)—SP-
1800

This is a very
comprehensive
document with
detailed examples
of ZTA approaches
based on various
commercial
vendors. It begins
by demonstrating
the mapping of
various vendor
products/services
to a logical ZTA
before describing
the physical
architecture
required for
implementation.
The guidance
provided is
primarily geared
toward large and
medium-sized
enterprises.
Although it covers
a range of zero trust

IT
professionals,
architects, and
security
managers, as
well as anyone
in a technical
management or
architecture
role.

https://oreil.ly/_OKnB

Volume Publication Description Audience
scenarios relevant
to an enterprise,
industrial control
systems (ICSs) and
operational
technology (OT)
environments are
expressly excluded.

35C “How-To
Guides” (2nd
Preliminary
Draft)—SP-
1800

This document
provides
instructions on how
to construct the
reference
implementations
specified in NIST
SP 1800-35B by a
variety of
commercial
vendors. In
addition, it
provides links to
the extensive
vendor
documentation
required to
establish a
functioning
environment based
on the proposed
vendor product or
service.

IT
professionals,
or anyone in an
operations and
infrastructure
management
role.

https://oreil.ly/cpnmO

Volume Publication Description Audience

35D “Functional
Demonstrations”
(2nd
Preliminary
Draft)—SP-
1800

This document
describes a variety
of ZTA use cases
and scenarios. It
also discusses the
results of use case
implementations
based on several
commercial
vendors’
products/services.

IT
professionals,
architects,
security
managers, or
anyone in an
operations and
infrastructure
management
role.

https://oreil.ly/KHpW_

Volume Publication Description Audience

35E “Risk and
Compliance
Management”
(Preliminary
Draft)—SP-
1800

This document
provides mappings
between logical
components of the
ZTA reference
design (especially
section 4.1 of NIST
SP 1800-35B) and
security
characteristics
mentioned in a
variety of NIST
cybersecurity
publications, with a
particular focus on:
SP 800-53r5:
“Security and
Privacy Controls
for Information
Systems and
Organizations”
NIST CSF 1.1:
“Framework for
Improving Critical
Infrastructure
Cybersecurity”
“Security Measures
for ‘EO-Critical
Software’ Use”

IT
professionals,
architects, and
security
managers, as
well as anyone
in a technical
management,
risk
management,
or architecture
role.

Cybersecurity and Infrastructure Security Agency (CISA)

https://oreil.ly/bEQB_
https://oreil.ly/oZhUV
https://oreil.ly/sAEe-
https://oreil.ly/cTdqt

The CISA Zero Trust Maturity Model has its foundation in the zero trust
pillars concept from the DoD and NSA zero trust architectures (both are
covered later in this chapter). The purpose of CISA’s maturity model is to aid
government agencies in developing zero trust implementation plans in
response to Executive Order 14028.

The zero trust pillars of CISA, as depicted in Figure 11-7, match the first five
DoD/NSA architectural pillars, with the exception of the renaming of the first
pillar from User to Identity.

Figure 11-7. CISA’s zero trust maturity model

The following are high-level descriptions of the pillars in this model:

Identity

An identity is an attribute or group of qualities that uniquely
describes a user or entity (which can be a non-person entity,
known as an NPE).

https://oreil.ly/Te-_z
https://oreil.ly/vJ8qS

Devices

A device is any hardware asset that can connect to a
network. This may include an internet of things (IoT) device,
smart watch, mobile phone, laptop, server, virtual machine,
etc.

Networks

A network is an open communications channel that
transports messages over agency internal networks, wireless
networks, and the internet.

Applications and workloads

These include computer programs, apps, APIs, and services
that run on premises or in the cloud.

Data

Includes any information a business requires to conduct its
key operations; it can reside on premises or in the cloud.

In addition to the five pillars, there are three key cross-cutting capabilities
that facilitate the interoperability across the pillars:

Visibility and analytics

The term visibility refers to the observable artifacts produced
by the events occurring throughout the enterprise. The
primary focus is on security-related data analysis that aids in
enhancing policies, facilitating responses, and developing a
risk profile in order to implement proactive security
measures that can be used to prevent potential attacks.

Automation and orchestration

Zero trust is highly reliant on automated tools, processes,
and workflows to enable the security response function
across all pillars.

Governance

This is the process of defining and enforcing the
cybersecurity policies, government standards, procedures,
and processes across the zero trust pillars.

According to CISA, achieving zero trust maturity involves beginning at a
traditional level as a starting point, then progressing through initial,
advanced, and optimal levels as zero trust architecture is implemented. Each
successive maturity level necessitates higher levels of security,
interoperability among pillars, automation, and overall awareness of the
organization’s security posture and ability to react quickly against attacks:

Traditional

This is the most basic maturity level, with little to no
automation for the lifecycle management of identities,
assets, and resources. Security policies are static and
fragmented, and the least privilege principle is applied only
when establishing new accounts and resources; it is not
maintained beyond that. The organization lacks
fundamental security information and event management
(SIEM) and security orchestration, automation, and response
(SOAR) capabilities, leaving it largely reliant on manual and
ad hoc processes to detect and respond to attacks.

Initial

At this maturity level, the lifecycle management of identities,
assets, and resources has a basic level of automation. The
majority of security rules are static, with little cross-pillar
integration. After initial account and resource provisioning,
the least privilege principle is only partly tracked and

applied. Security information and event management
capabilities are limited, and security orchestration,
automation, and response capabilities are only partially
available in a siloed fashion among the pillars.

Advanced

At this level of maturity, the controls for lifespan and
configuration assignment for identities, assets, and resources
are automated. Security policies are coordinated across
multiple pillars. The least privilege principle is used
throughout the ecosystem, and risk is considered while
evaluating changes in privilege. SIEM and SOAR capabilities
are available centrally, with information flowing in from
across all the pillars.

Optimal

This is the highest level of maturity, and at this level, controls
for lifecycle and configuration assignment for identities,
assets, and resources are just-in-time (JIT) and fully
automated. Security policies are adaptive and able to adjust
automatically, reflecting changes in the security posture
across the pillars. The least privilege principle is dynamic
and applies privileges to assets and resources across the
pillars using just-enough access (JEA). SIEM and SOAR
capabilities are centrally available and provide a
comprehensive view of the security posture across the zero
trust pillars.

Department of Defense (DoD)
The United States Department of Defense (DoD) published the “Zero Trust
Reference Architecture”, which divides zero trust principles and
technologies into seven pillars: user, device, network/environment,

https://oreil.ly/d4OJ1

application and workload, data, visibility and analytics, and automation and
orchestration.

Each pillar is a critical focus area for zero trust control implementation, and
all are needed to protect the data, which is at the center, as shown in
Figure 11-8. This reference architecture’s primary stakeholders are the
DoD’s mission owners (MOs), who are defined as
“individuals/organizations responsible for the overall mission
environment, ensuring that the functional and cybersecurity requirements
of the system are being met.”

Figure 11-8. DoD zero trust pillars

The following is a brief description of each pillar:

Users

Personal and nonperson entity access must be secured,
constrained, and enforced using identity capabilities such as
multifactor authentication (MFA) and privileged access
management (PAM) for privileged functions. To control user
access and privileges, organizations must authenticate,
authorize, and monitor user activity patterns on a
continuous basis.

Devices

A zero trust system requires the capacity to identify,
authenticate, enumerate, authorize, isolate, secure,
remediate, and control all devices. Also, devices must be
authenticated, inspected, appraised, and patched on a
regular basis.

Application and workload

The security and management of applications and workloads
such as containers, virtual machines, and so on are critical to
zero trust adoption. To secure applications from the start,
source code and shared libraries must adhere to strict secure
development lifecycle (SDLC) and DevSecOps guidelines.

Data

As part of their overall zero trust strategy, organizations
must classify their data, assets, applications, and services
(DAAS) based on mission criticality, and use this information
to develop a comprehensive data management plan. This
involves validating data, classifying data, creating schemas,
and encrypting data at rest and in transit.

Visibility and analytics

Visibility facilitates the detection of anomalous behavior and
provides insights that facilitate changes to the security policy
dynamically. A zero trust enterprise will record and examine
traffic. This requires going beyond network telemetry and
inspecting packets using techniques such as deep packet
inspection.

Network/environment

Use segmentation to isolate and control off-premises (e.g.,
cloud) and on-premises (e.g., private datacenter)
networks/environments with granular access control and
policies. Use of micro-segmentation is highly recommended
as it enables tighter and fine-grained control over access
flows, which may help limit the lateral movement.

Automation and orchestration

Automation of manual security procedures to enable policy-
based decision making across the enterprise is necessary.
The use of SIEM and SOAR to detect, react, and respond to
threats more swiftly is important.

The DoD reference architecture uses the following guiding principles when
establishing a zero trust security approach:

Assume no implicit trusted zone in networks.

Identity-based authentication and authorization are strictly enforced for
all connections and access to infrastructure, data, and services.

Machine to machine (M2M) authentication and authorization are strictly
enforced for communication between servers and applications.

Risk profiles, generated in near-real time from monitoring and
assessment of both user and device behaviors, are used in authorizing
users and devices to access the resources.

All sensitive data is encrypted both in transit and at rest.

All events are to be continuously monitored, collected, stored, and
analyzed to assess compliance with security policies.

Policy management and distribution is centralized.

The reference architecture is comprehensive. You can acquire a deeper
understanding of specific topics covered in the reference architecture

https://oreil.ly/qY9v4

document by perusing the relevant sections:

“Vision and Goals” (refer to section 1.4)

“Pillars and Principles” (refer to section 2)

“Capabilities” (refer to section 3)

“Use Cases” (refer to section 4)

“Technical Positions” (refer to section 5)

“Security Assessment” (refer to section 6)

“Architecture Patterns” (refer to section 7)

“Transition Architecture Planning” (refer to section 8)

DOD RESOURCES LIBRARY
Visit the DoD online digital library to gain access to all the zero trust publications mentioned in this
book, as well as other relevant cybersecurity and technology-related publications.

Further publications from the DoD on zero trust are provided here. These can
be used to learn more about the DoD’s zero trust vision, strategy, timetables,
and methodology:

“Zero Trust Strategy”

Establishes intended outcomes for various components in
order to achieve minimum zero trust target-level capabilities
for data, assets, applications, and services (DAAS) at all
classification levels throughout the DoD Information
Enterprise (IE).

“Zero Trust Reference Architecture”

Establishes a zero trust reference architecture, provides
direction via architectural pillars and principles, and

https://oreil.ly/qY9v4
https://oreil.ly/TxuGj
https://oreil.ly/p5xfD
https://oreil.ly/vbQgp

identifies broader strategic goals and objectives.

“Zero Trust Capability Execution Roadmap”

This is the roadmap that depicts how zero trust capabilities
will progress across the seven pillars of zero trust.

Zero Trust strategy placemat

Provides a concise picture of the DoD Information Enterprise
(IE)—Zero Trust Framework, including zero trust culture
adoption, technology, and zero trust enablement.

National Security Agency (NSA)
The National Security Agency has published “Embracing a Zero Trust
Security Model”, which provides guidance that highlights how zero trust
security principles can better position cybersecurity professionals to protect
enterprise networks and sensitive data. To provide NSA customers with a
foundational understanding of zero trust, this publication discusses its
benefits, outlines a maturity model along with the potential challenges, and
makes recommendations for implementing zero trust within their networks.

The NSA publication stresses taking a fresh perspective to address cyber
threats, and advocates for the following guidelines:

Coordinated and aggressive system monitoring, system management, and
defensive operations capabilities.

Assuming all requests for critical resources and all network traffic may
be malicious.

Assuming all devices and infrastructure may be compromised.

Accepting that all access approvals to critical resources incur risk, and
being prepared to perform rapid damage assessment, control, and
recovery operations.

https://oreil.ly/dEL9p
https://oreil.ly/RcLV1
https://oreil.ly/q75af

It also emphasizes the need to adhere to the fundamental principles of zero
trust: never trust, always verify, assume breach, and verify explicitly. It also
suggests the importance of acknowledging the difficulties and maturity
required for implementing zero trust, as well as the fact that such an endeavor
requires time and deliberate planning.

It highlights that transitioning to a mature zero trust architecture all at once, in
a big bang fashion, is not necessary and may even be detrimental. The
transition should instead be gradual and iterative. When examining how to
integrate zero trust principles into an environment, the NSA advises
beginning with early planning, and progressing through basic, intermediate,
and advanced levels of maturity over time. The NSA’s approach toward zero
trust mature implementation is shown in Figure 11-9.

Figure 11-9. NSA’s approach toward mature zero trust implementation

The NSA also identified potential roadblocks on the path towards zero trust.
These can be summed up as follows:

Lack of support/buy-in from leadership, administrators, and users

Infrastructure improvements and scalability are needed to enable the
zero trust initiative

Implementation fatigue can result from persistent technical and
functional challenges

The “Advancing Zero Trust Maturity Throughout the User Pillar” is a related
publication by the NSA that describes how to improve the maturity of the
user pillar.

United Kingdom
The National Cyber Security Centre of the United Kingdom has published
“Zero trust architecture design principles,” which provide guidance for
designing and evaluating a zero trust architecture in accordance with an
organization’s specific needs. These guidelines are intended to assist
organizations implementing a zero trust architecture in an enterprise
environment, including both the public and private sectors. These principles
are high-level guidelines focused on knowing the key tenets of zero trust, then
applying policies to implement zero trust, and then ensuring that trust is not
granted implicitly at any point. Figure 11-10 visually explains these
principles.

Figure 11-10. UK National Cyber Security Centre zero trust architecture design principles

European Union
The EU Directive 2022/2555 advocates for the implementation of zero trust
principles. The following excerpt highlights the call for the adoption of zero

https://oreil.ly/1_W7x
https://oreil.ly/F0HT0
https://oreil.ly/G1S5H

trust principles along with other cybersecurity practices:

“Essential and important entities should adopt a wide range of basic
cyber hygiene practices, such as zero-trust principles, software updates,
device configuration, network segmentation, identity and access
management or user awareness, organise training for their staff and
raise awareness concerning cyber threats, phishing or social
engineering techniques.”

Although the directive does not provide a formal zero trust reference
architecture or model, it does emphasize zero trust principles as part of
overall cybersecurity.

The Network and Information Security (NIS2) directive, published in August
2023, is another relevant piece of EU-wide cybersecurity legislation with the
stated goal of attaining a high common standard of cybersecurity across all
European Union member states.

Private and Public Organizations
This section covers several publications that are pertinent to the zero trust
and are widely referenced within the security industry. These publications
have been generated by public or private organizations, including working
groups, consulting and research firms, etc.

Cloud Security Alliance (CSA)
The Cloud Security Alliance (CSA) is a nonprofit organization dedicated to
developing and advocating best practices for cloud computing security.
Following is a list of various publications by the CSA, including reports,
specifications, and guidance on zero trust. These publications have broad
audiences, including senior leaders, executives in security roles, architects,
engineers, and technical product managers.

“CISO Perspectives and Progress in Deploying Zero Trust”

https://oreil.ly/n1wpv
https://oreil.ly/wPdDW
https://oreil.ly/WLAvn

This is survey-based research that covers topics such as
where zero trust stands in organizations, the percentage of
people who have completed related implementations, top
business issues, and top technical challenges.

“Integrating SDP and DNS: Enhanced Zero Trust Policy Enforcement”

The goal of this article is to show how an enterprise-
managed DNS, DHCP, and IPAM (IP address management)—
their combination is referred to as DDI—system can be
integrated with a Software-Defined Perimeter (SDP) to
improve security visibility, resiliency, and responsiveness.

“Software-Defined Perimeter (SDP) and Zero Trust”

This paper demonstrates how an SDP can be used to
construct zero trust networks (ZTNs) and why the SDP
architecture is the best for achieving zero trust. It explains
how applying an SDP enhances the security posture of
enterprises facing the challenge of continuously adjusting to
expanding and increasingly malicious security threats.

“Software-Defined Perimeter (SDP) Specification v2.0”

This specification document covers the definition of an SDP
and its operation, an explanation of the three SDP
architecture components (Controller, Initiating Hosts, and
Accepting Hosts), and provides a preliminary look at six
distinct SDP deployment models.

“Toward a Zero Trust Architecture”

This paper explores the impacts of evolving and diversified
solutions as well as difficulties that an organization may
have in delivering a zero trust architecture.

“Zero Trust as a Security Philosophy”

https://oreil.ly/JiDQD
https://oreil.ly/_Ecw2
https://oreil.ly/57_8S
https://oreil.ly/HbkwO
https://oreil.ly/iwv0v

This paper examines zero trust from a vendor-neutral and
technology/solution-neutral perspective, and offers ideas for
developing a strategy and supporting architecture that
support the company and its workflows while aligning IT to
business goals and outcomes.

The Open Group
The Open Group is a global consortium that facilitates the achievement of
business objectives through the implementation of technology standards.
Following is a list of The Open Group’s zero trust publications. Their target
audiences include senior leaders, executives in security roles, architects, and
others.

“Zero Trust Commandments”

This document is intended for business, security, and
information technology administrators. The commandments
are derived and expanded from the “Zero Trust Core
Principles” whitepaper that is also released by The Open
Group.

“Zero Trust Core Principles”

This document presents zero trust to business, security, and
IT leaders. It outlines the key motivations for zero trust, its
effects, and the core components of zero trust.

Gartner
Gartner, Inc. is a prominent technology research and consulting organization
that performs technology research and offers its findings through private
consultation, executive programs, conferences, and other reports. According
to Gartner, zero trust network access (ZTNA) is a maturing technology, with
several vendors offering various ZTNA products and services. These
services, however, are often simply the first step in using technology as part
of a zero trust approach. Typically, organizations begin by analyzing ZTNA

https://oreil.ly/unHX4
https://oreil.ly/qkJNn
https://oreil.ly/Sbvwk
https://oreil.ly/nwIcd

vendor capabilities, ignoring the broader alignment to strategy and use cases.
To address this gap, Gartner has introduced SASE (pronounced “sassy,” and
stands for secure access service edge), which refers to a framework (not a
technology) that includes comprehensive WAN and security services
functions. It also calls for alignment of security requirements with ZTNA’s
primary use cases, as shown in Figure 11-11.

Figure 11-11. Align security requirements with ZTNA’s primary use cases

SASE offers a converged network and security as a service capabilities,
including an SD-WAN (software-defined wide area network), SWG (secure
web gateway), CASB (cloud access security broker), NGFW (next-
generation firewall), and ZTNA (zero trust network access). SASE enables
secure access use cases for branch offices, remote workers, and on-

premises. SASE is largely supplied as a service and offers zero trust access
based on the device or entity’s identity, in conjunction with real-time context
and security and compliance standards.

Gartner chose not to release its Magic Quadrant, an access point for suitable
vendors, for the SASE, but instead released it for security service edge
(SSE), which is described as a convergence of network security services
supplied from a purpose-built cloud platform. In a nutshell, SSE is a subset
of the SASE framework, with its architecture centered on security services.
SSE is made up of three key services: an SWG, a CASB, and a framework
for ZTNA.

Forrester
Forrester is a UK research and advisory firm that provides research,
consulting, and events, among other services. In November 2010, it
published a report on zero trust titled “No More Chewy Centers: The Zero
Trust Model Of Information Security” that defined the key aspects of zero
trust security as they are known today. In January 2022, it published “The
Definition Of Modern Zero Trust”, which defines zero trust as:

“Zero Trust is an information security model that denies access to
applications and data by default. Threat prevention is achieved by only
granting access to networks and workloads utilizing policy informed by
continuous, contextual, risk-based verification across users and their
associated devices. Zero Trust advocates these three core principles: All
entities are untrusted by default; least privilege access is enforced; and
comprehensive security monitoring is implemented.”

Forrester’s Zero Trust Model of information security is a conceptual and
architectural model for how security teams should redesign networks to have
secure microperimeters, strengthen data security using obfuscation
techniques, limit the risks associated with excessive user privileges and
access, and dramatically improve security detection and response with
analytics and automation.

https://oreil.ly/zYlSt
https://oreil.ly/4JrZm
https://oreil.ly/kCc7W
https://oreil.ly/j24aI
https://oreil.ly/JDRpO
https://oreil.ly/l__UM

Forrester also releases the “Zero Trust eXtended (ZTX) Ecosystem”, which
is a framework for controlling the evolution of the zero trust ecosystem. This
more in-depth look into zero trust gives security professionals a complete
reference point for identifying which tools and technologies are available in
this domain, and which they should use for their security operations needs. It
also periodically releases updates to this framework and lists prominent
vendors in the zero trust ecosystem.

International Organization for Standardization (ISO)
While the International Organization for Standardization (ISO) does not
provide specific guidance on zero trust design and implementation, the core
elements of the ISO 27001 standard, such as risk assessment, access control,
and continuous improvement, align very well with the key tenets of zero trust:
no implicit trust, always verify requests, use of least privilege permissions,
and continuous logging and monitoring.

Least privilege-based access control

Limiting a user’s access permissions to the bare minimum is
in line with the ISO 27001 access restriction policy (Annex
A.9). As a result of this policy, organizations may decrease
their attack surface and mitigate the risk of unauthorized
access.

Network security with no implicit trust

The ISO 27001 communications security policy (Annex A.13)
recommends network segmentation to contain potential
breaches and prevent unauthorized access. This is consistent
with the zero trust core principle of no implicit trust (just
because you are inside the network, you are not
automatically trustworthy), and is typically implemented
through schemes such as microsegmentation.

Continuous logging and monitoring

https://oreil.ly/5e4On
https://oreil.ly/QcLdq
https://oreil.ly/S9AAC

The ISO 27001 logging and monitoring policy (Annex A.12.4)
is intended to guarantee that organizations keep track of
security and audit events in a non-refutable fashion. This is
also a crucial requirement for zero trust, which demands
constant logging to keep track of and monitor activities in
the organization, as well as the ability to respond to them in
a timely manner to guarantee that the security posture does
not deteriorate over time.

Commercial Vendors
In recent years, there has been a significant influx of zero trust security
products and services from cloud vendors and traditional networking product
vendors alike. This is due to a combination of factors, including an increase
in cyberattacks, a shift toward cloud computing, and regulatory agencies
imposing harsh fines in the event of a data breach. In general, CISOs and
executives are increasingly seeking zero trust solutions from vendors already
present in their system, as they are typically hesitant to engage a
heterogeneous mix of vendors for security needs.

The Table 11-6 list selects vendors based on two sources: those classified as
leaders or challengers in Gartner’s SSE Magic Quadrant (for the year 2023,
which is the most recent at the time of writing) and cloud vendors based on
their market share as published by Statista.

https://oreil.ly/l-lWW
https://oreil.ly/BsWaY

Table 11-6. Zero trust offerings from commercial vendors

Vendor Description

Microsoft
Zero Trust model

“Evolving Zero Trust” (whitepaper)

“Zero Trust Essentials” (ebook)

Microsoft Zero Trust Maturity Assessment Quiz

Google BeyondCorp is Google’s zero trust model
implementation and can be enabled in any organization
through BeyondCorp Enterprise

Amazon
Amazon’s Zero Trust approach: “Zero Trust on
AWS”

“Zero Trust architectures: An AWS perspective”

IBM
“Zero trust security solutions”

“Getting started with zero trust security”

“Protect the Hybrid Cloud with Zero Trust”

https://oreil.ly/4qa1i
https://oreil.ly/zroBD
https://oreil.ly/2mnnr
https://oreil.ly/HoXyY
https://oreil.ly/TNBX4
https://oreil.ly/FQqg8
https://oreil.ly/P3k3I
https://oreil.ly/bsKE8
https://oreil.ly/mt7Oj
https://oreil.ly/njfa0
https://oreil.ly/dkt6d

Vendor Description

Alibaba
“Alibaba Cloud Service Mesh: Overview of zero
trust security”

“Zero-Trust Security – Part 1: How Is Zero-Trust
Security Helpful for the Cloud?”

“Zero-Trust Security – Part 2: Getting Started with
Zero-Trust Security”

“Zero-Trust Security – Part 3: Zero-Trust Security
with Cloud-Native Microservices and Containers”

Salesforce
About Salesforce security

“Zero Trust: Securing Your Business for
Tomorrow”

Oracle
“Zero-trust security model”

“Approaching Zero Trust Security with Oracle
Cloud Infrastructure”

Netskope
“Netskope Reference Architecture for Zero Trust”

“What is Zero Trust?”

ZScaler “What Is Zero Trust?”

Palo Alto
Networks

“Zero Trust with Zero Exceptions”

Cisco “Zero trust security”

https://oreil.ly/Zer2Y
https://oreil.ly/0xIDz
https://oreil.ly/mKgzh
https://oreil.ly/cC_T8
https://oreil.ly/ZKwvl
https://oreil.ly/x6Rva
https://oreil.ly/Ooskj
https://oreil.ly/r7oIP
https://oreil.ly/37QZS
https://oreil.ly/SQ3Ey
https://oreil.ly/E34LQ
https://oreil.ly/BpAJZ
https://oreil.ly/Qx0Ra

Summary
In this chapter, we discussed a variety of publications that provide zero trust
reference architectures, maturity models, principles, guidelines, and
implementation guidance from a variety of institutions ranging from
governments to public and private organizations. Zero trust is a highly
dynamic and continuously growing field, and it is recommended that you use
the links and references supplied throughout this chapter to look deeper into
particular aspects of zero trust.

In the next and final chapter of this book, you will learn about common
challenges faced by organizations implementing the zero trust initiative. It
also discusses the potential impact of technological advancements such as
artificial intelligence, quantum computation, and privacy-enhancing
technologies that are useful for zero trust security.

Chapter 12. Challenges and the
Road Ahead

In this concluding chapter, you will learn about the challenges commonly
encountered when implementing zero trust initiatives, as well as the impact
of new technological developments, such as quantum computing, artificial
intelligence, and privacy-enhancing technologies. The goal is to provide a
high-level view of the technical and functional challenges associated with
zero trust initiatives in a vendor-neutral manner, as well as to discuss
emerging technologies that will ultimately impact both zero trust and
organizations’ broader cybersecurity efforts.

Challenges
This section discusses the common challenges encountered during the
implementation of a zero trust initiative and provides a few recommendations
for dealing with them. As you delve into the subject matter, it becomes
evident that the challenges include not only technical factors but also
functional issues, requiring potential cultural and process-level
improvements.

Mindset Shift
Implementing a zero trust initiative requires a paradigm shift in security
philosophy. It necessitates a shift away from traditional perimeter-based
security to an “always assume breach” mindset. However, when dealing with
a large organization with a decade of legacy IT architecture and practices,
the implementation of zero trust principles turns out to be challenging.

For most organizations, the zero trust initiative is a new endeavor that
requires full backing and buy-in from the executive leadership. To effectively

handle the challenges that are encountered when executing a zero trust
initiative, all key stakeholders within the organization must examine their
core objectives and incorporate zero trust related activities into their team or
group specific objectives and key results (OKRs).

Furthermore, it is recommended to use an iterative approach while
implementing a zero trust initiative within an organization. While there may
be consensus among the key stakeholders that embracing a zero trust
approach can enhance security posture, it may be necessary to prioritize the
implementation process for businesses or groups within organizations that
exhibit a higher level of receptivity to change and fresh ideas. You may want
to refer to the maturity models discussed in Chapter 11 to gain a more
thorough understanding of the various zero trust implementation modalities.

Shadow IT
Shadow IT is the use of IT-related hardware, software, and cloud services
that are not owned and governed by an IT organization. Shadow IT means
that the configuration management database (CMDB) won’t have a complete
record of devices, software, services, etc., that are used within an
organization and are required to be monitored and updated with patches. This
also leads to situations where data is created, managed, and shared internally
or even externally without any checks and balances from the organization. In
a nutshell, organizations with shadow IT face severe regularity, compliance,
operational, and security repercussions.

Shadow IT poses a significant obstacle to the successful implementation of a
zero trust initiative. This is primarily due to the difficulty of verifying vital
information such as device, application, and agent details, as there is no
central location where this information is stored. These pieces of information
are also necessary for zero trust components such as the policy engine and
trust engine to effectively evaluate the access request and make a
determination. Moreover, ensuring continuous monitoring and implementation
of policy enforcement poses a significant challenge.

Additionally, users are typically unaware of the effects of shadow IT and
may encounter challenges. For instance, in order to improve security posture,
organizations may ask users to perform step-up or adoptive authentication,
such as multifactor authentication (MFA), when signing in from devices or
when accessing endpoints that are not part of the CMDB. This may have a
negative impact on their productivity, as they may be prompted for MFA
more frequently until the CMDB is correctly updated.

In order to tackle shadow IT, organizations may want to put in place a cloud
access security broker (CASB), which aids in the management of shadow IT.
As per Gartner:

Cloud access security brokers (CASBs) are on-premises, or cloud-based
security policy enforcement points, placed between cloud service
consumers and cloud service providers to combine and interject
enterprise security policies as the cloud-based resources are accessed.

With CASB, organizations gain visibility into traffic and application
utilization patterns, including endpoints, which enables them to comprehend
the scale of their shadow IT footprint.

Siloed Organizations
Zero trust endeavors require a high degree of collaboration among the teams
across the organization, such as engineering, operations, support/customer
care, and compliance. Large organizations develop siloed processes over
time for managing teams, resulting in muddled communication regarding
roles, responsibilities, and ownership. The more siloed an organization is,
the more difficult it is to carry out an initiative like zero trust without being
sidetracked by day-to-day politics. Ultimately, the final outcomes are
constrained by the organizational structure, as indicated by Conway’s law. It
is critical that communication channels exist among teams without red tape.

When dealing with siloed organizational structures, there are two areas to
pay special attention to. First, relevant leaders from various divisions, such
as engineering, infrastructure, customer service, compliance, and so on, must
be on the same page and agree to rally behind the initiative at the highest

https://oreil.ly/Xntbs
https://oreil.ly/4OiBg

level. Second, it is also critical that an ongoing cadence be established to
review obstacles and any roadblocks, such as technical issues, budgetary
challenges, upskill/training requirements, and so on. If these issues are not
tracked, they will never be addressed.

Another consideration is to prevent the “too many chefs in the room”
situation. While it is absolutely critical for leadership and necessary teams to
be aligned, just allocating more resources to the problem is unlikely to
produce the intended results. This generally happens when organizational
culture is such that, while under pressure, teams capitulate and, rather than
finding a resolution based on active collaboration among existing teams and
applying cerebral thinking to the problem, leaders are inclined toward
adding more resources. This may actually have a negative impact on overall
progress as it will increase management time and overhead. A better
approach is to define the goals clearly and create ownership with
accountability based on the subject matter expertise of the teams, and if there
is a contentious issue, employ approaches like disagree and commit to get
over that hurdle.

Lack of Cohesive Zero Trust Products
As the zero trust model gains traction in the security industry, a plethora of
products and services targeting zero trust initiatives have entered the market.

Organizations undertaking zero trust initiatives have to deal with a wide
array of vendors offering competing products and services with little to no
cohesion and harmony among them. This creates both functional and technical
challenges, such as usage of proprietary data formats, lack of well-defined
APIs for backend connectivity, and wildly different UX. Operationally,
having a broad range of products and services involves dealing with distinct
service-level agreements (SLAs) and licensing, which makes administration
complex. Additionally, this also frustrates and creates friction for end users
since they have to frequently switch between various products, which
eventually makes it more difficult for the organization to implement the zero
trust initiative.

https://oreil.ly/70mzW

Organizations should examine frameworks such as Gartner’s security service
edge (SSE) to gain a more thorough comprehension of the vendor ecosystem
and its maturity. For more information, you should review the SSE Magic
Quadrant and SSE vendor platform and service reviews.

Scalability and Performance
It is common for IT teams to support architecture that is conducive to the
various workstyles of employees as well as infrastructure required to
support essential business services. Zero trust implementation requires
highly scalable and performant control and data planes. For instance, the trust
engine and policy engine are critical decision-making components that must
be able to scale and perform within the quality of service (QoS) parameters
defined by the organization.

This is why it is necessary to carry out adequate testing to ensure that zero
trust architecture can withstand scalability and performance requirements,
can dynamically scale up or down as required, and meets or exceeds the
SLA. For example, running a simulation based on the anticipated workload
and calibrating the components is critical from an operational aspect and
will also instill confidence in the organization’s early adopters of the zero
trust architecture.

Key Takeaways
While it is difficult to provide prescriptive guidelines and a list of tasks to
pursue when embarking on a zero trust initiative, a number of high-level
considerations can help set the ship on its proper course:

Identify the organization’s key drivers and use cases, and also outline
business case scenarios and policies.

Define a zero trust implementation roadmap that clearly defines all
stages as well as the risks associated with them.

Perform an audit of existing infrastructure and technologies to determine
technical debt.

https://oreil.ly/3KIlM
https://oreil.ly/1x4HY
https://oreil.ly/ofw8w

Analyze legacy technologies, outdated protocols, products, and so on
that may need to be replaced or updated as part of the zero trust
implementation.

Conduct a security posture analysis to determine where the
organization’s risks are. This encompasses penetration testing, threat
modeling, auditing, and other similar activities.

Technological Advancements
There are numerous technological advances that already have or will soon
have a significant impact on security. In this section, you’ll learn about the
effects that quantum computing, artificial intelligence, and privacy-enhancing
techniques are likely to have your enterprise’s security posture and,
ultimately, the zero trust initiative.

Quantum Computing
Modern IT infrastructure relies heavily on public key infrastructure (PKI) to
secure and protect data, assets, communications, etc. For example, the use of
X.509 certificates to verify identities and secure data, both in transit, is just
one example of how prevalent and important PKI is in today’s security
infrastructure. The security of the underlying cryptographic algorithms used
by PKI is based on the fundamental assumption that certain mathematical
problems are computationally very hard and complex to solve in a
reasonable amount of time, even for the most powerful supercomputers. For
example, the security of the asymmetric algorithm keys such as the Rivest-
Shamir-Adleman (RSA) algorithm, one of the most widely used algorithms
today, depends on the difficulty of factoring the product of two very large
prime numbers. The underlying theme is that it will take an inordinate amount
of time for adversaries to crack these keys using today’s standard computing
technology.

However, as quantum computing gains traction and becomes more imminent
with each passing year, using computationally hard mathematical problems as

https://oreil.ly/9lLOc
https://oreil.ly/WUWhE

a method to secure keys is called into question. For instance, Shor’s
algorithm, a quantum algorithm, has the capability to solve large integer
factorization problems in polynomial time. It means that quantum computers
will be able to solve difficult mathematical problems such as prime number
factorization in a fraction of the time required by the most advanced
computational machines that are available today. Essentially, quantum
computing is an imminent threat to the security of RSA and other widely used
asymmetric cryptographic algorithms employed to secure infrastructure
today.

QUANTUM COMPUTING’S IMPACT ON DATA
CONFIDENTIALITY

Consider a scenario in which an adversary gains access to data encrypted with an algorithm that is
not quantum resistant (such as RSA). Since the data is encrypted, it cannot be decrypted and read
instantaneously. However, an adversary with access to a quantum computer can decrypt the data at
a later time. Since many organizations, such as critical government agencies, financial institutions,
and health care providers, etc., have regulatory and compliance requirements to store data for
extended periods of time and keep it confidential, quantum computers represent a threat to data even
before they have been built.

Active research has been conducted to address the quantum computing threats
to current cryptographic algorithms. Post-quantum cryptography (PQC) and
quantum key distribution (QKD) are two prevalent approaches to quantum-
resistant cryptography. The PQC takes an approach to the development of
novel cryptographic schemes that does not require the factorization of large
prime numbers, can be executed on modern computers, and is resistant to
cryptanalytic attacks from both classical and quantum computers. QKD, on
the other hand, creates a cryptographic key utilizing the fundamental
principles of quantum mechanics, making it the theoretically most secure
technique for protecting against threats from both regular computers and
quantum computers.

Participants in the development of these two approaches believe they will
coexist for some time, primarily for practical reasons. PQC, for example, has
a lower barrier to entry because it is primarily software based, does not

https://oreil.ly/cfKra

require quantum mechanics, and can leverage existing infrastructure, whereas
QKD does require specialized hardware as it relies on quantum mechanics.
Nonetheless, depending on the use case, QKD may be preferred to PQC for
highly sensitive applications.

Organizations working toward implementing zero trust architecture need to
be cognizant of the fact that cryptographic algorithms that are considered
relatively secure today may become insecure when quantum computing
becomes accessible. Thus, it is crucial to remain up to date on the risks and
benefits of quantum computing. The following publications from various
leading institutions will help you understand the landscape of quantum
computing and its impact on cybersecurity:

European Union Agency for Cybersecurity (ENISA)—“Post-Quantum
Cryptography: Anticipating Threats and Preparing the Future”

National Institute of Standards and Technology (NIST)—“Post-Quantum
Cryptography”

United States White House—“Executive Order on Enhancing the
National Quantum Initiative Advisory Committee”

United States Cybersecurity & Infrastructure Security Agency (CISA)
—“Quantum-Readiness: Migration to Post-Quantum Cryptography”

United States Department of Homeland Security (DHS)—“Post-
Quantum Cryptography”

United States National Security Agency (NSA)—“The Commercial
National Security Algorithm Suite 2.0 and Quantum Computing FAQ”

Artificial Intelligence
The significance of artificial intelligence (AI) in today’s world cannot be
overstated. It affects every industry and business segment, and its utilization
and adoption will only increase over time. When it comes to cybersecurity,
AI can be a double-edged sword for organizations implementing zero trust
initiatives. It can be a significant productivity accelerator as well as an

https://oreil.ly/NTMJ1
https://oreil.ly/9u80s
https://oreil.ly/B-xkg
https://oreil.ly/vdg36
https://oreil.ly/obzgp
https://oreil.ly/da0Id
https://oreil.ly/OtIgN

enabler to improve security posture. However, it may also provide attackers
with more sophisticated tools for their attack, leaving organizations
vulnerable to a broadened attack surface area if AI-based security threats are
not addressed properly.

The following are some of the key AI-enabled capabilities that organizations
implementing zero trust initiatives should evaluate and plan to capitalize on,
as these are directly related to the strengthening of security posture. It is
recommended to use AI to perform the following functions:

Enable the detection of and protection from zero-day attacks and
anomalous/malicious behavior patterns, and provide complementary
heuristic and signature-based approaches.

Assist organizations in improving their privacy and data classification
processes by automatically discovering and identifying sensitive data
and enterprise digital assets.

Enable security teams to reduce time spent on hunting for threats and
respond quickly to critical security incidents while also helping with
root cause analysis (RCA). Generative AI can help with this by
providing assistance through a prompt-based natural language interface.

Simplify configuration management and access management policies to
make them faster and more optimal. Moreover, use AI to detect blind
spots and security weaknesses in policies that might otherwise be
difficult to discover.

AI also poses a range of security threats that must be carefully evaluated.
Here is a nonexhaustive list:

Deepfakes use AI to supplant the likeness of one person in audio or
video with the likeness of another person. They can be an extremely
effective tool for social engineering-based attacks.

AI models are trained on massive datasets, raising issues about data
privacy and security because they may include the processing of

sensitive personally identifiable information (PII), which must be
treated with prudence in order to comply with data privacy regulations.

Organizations must implement AI responsibly. The use of AI in the
context of cybersecurity must be dependable, secure, and ethical. To
ensure that the results generated by AI are reliable and consistent, it is
necessary to comprehend how AI comes to those conclusions in the first
place. However, AI models can be quite complex and difficult to
interpret, making it difficult for security teams to comprehend how the
AI arrives at its conclusions, and thereby making it difficult to explain
them to broader stakeholders. Responsible AI is a field where these
issues are discussed, and leaders must stay current with it in order to
keep up with the most recent developments in that discipline.

AI models take time to mature and may occasionally mistake
legitimate/safe requests for threats or anomalies. This results in false
positives, which leads to wasted effort from security teams, as they
need to review and then mark these requests as false positives.
Moreover, this creates friction with end users, who are on the receiving
end of these false positives. Having an AI model with a feedback loop
typically decreases the probability of false positives over time as the
model can learn from the feedback.

AI models are susceptible to attacks that can generate adversarial
examples, causing the AI model to misclassify inputs and diminishing its
efficacy. This risk is amplified in the era of generative AI with large
language models (LLMs) such as GPT, LLaMA, etc., which can
generate highly realistic synthetic data that may be difficult for AI
security systems to distinguish from authentic data. Another rising threat
to AI models is data poisoning, which involves tampering with the data
used to train the models, resulting in back doors exploited by
adversaries.

AI is a rapidly evolving field, and these resources will help you learn more
about AI-based security risks and ethical responsibilities:

“NIST AI Risk Management Framework”

European Commission—“High-level expert group on artificial
intelligence,” ethics, policy, and investment guidelines and
recommendations

European Union Agency for Cybersecurity—“Multilayer Framework for
Good Cybersecurity Practices for AI”

Republic of China—interim administrative measures for generative
artificial intelligence

The Open Worldwide Application Security Project—“OWASP Top 10
for LLMs”

Privacy-Enhancing Technologies
Zero trust places great emphasis on ensuring data is protected at all times
from unauthorized access. However, in today’s world of Bring Your Own
Device (BYOD), remote work, and the wide array of applications through
which users share their data, this poses a significant challenge: how to
preserve the privacy of data and ensure it is protected at all times—at rest, in
transit, and while in use. Although tools and technologies for protecting data
at rest and in transit have matured significantly, protecting data while in use
(such as when performing a computation) and when shared with multiple
parties for processing remains a significant challenge. This is where privacy-
enhancing technologies (PETs) come into play. PETs assist organizations in
obtaining cryptographic assurance that their data is protected at all times,
even when in use, and cannot be accessed by the cloud provider or any other
unauthorized entity. PETs strive for data protection by design and ensure this
protection at all times, both when it is being computed and when it is being
used by multiple parties.

https://oreil.ly/_2vyv
https://oreil.ly/sXvSi
https://oreil.ly/M29b2
https://oreil.ly/-GB6m
https://oreil.ly/kl5RQ
https://oreil.ly/mvXGh
https://oreil.ly/hZwgc

PET TERMINOLOGY
PETs are a rapidly developing area, so definitions and terminologies are still evolving, and terms like
privacy-preserving and privacy-enhancing are sometimes used interchangeably. If you want to learn
more about PETs and their use cases, review a report from the White House titled “National
Strategy to Advance Privacy-Preserving Data Sharing and Analytics”, which provides an accessible
summary of various privacy-preserving technologies. Also, publications available from NIST and EU
ENISA can be very useful in exploring PETs.

Many organizations transition to the public cloud as an important part of their
digitization efforts, but are also in the process of implementing zero trust
architecture. Organizations utilizing the public cloud must rely on their cloud
provider’s assurances that it will not access their data. For instance, PETs
like homomorphic encryption ensure that data is protected via encryption
even when computation is carried out within the public cloud infrastructure
(e.g., virtual machines, containers, etc.). Another example is confidential
computing, which provides attestation backed by cryptographic proof that
both data and code reside in a highly secure Trusted Execution Environment
(TEE, a distinct chip within the CPU/GPU), and that they are always
encrypted and protected from any unauthorized access. Confidential
computing is also very useful in establishing both secure boot operations and
ensuring via attestation capability that applications operate within the
expected parameters on specific hardware and software platforms.

The following is a short list of PETs that organizations implementing zero
trust should review in order to improve data privacy:

Homomorphic encryption

This allows you to compute encrypted data without first
decrypting it. The computations themselves are encrypted as
well. Once decrypted, the output is identical to what would
have been produced if the computation had been conducted
on the original plain-text data.

Confidential computing

https://oreil.ly/ogmSN
https://oreil.ly/hWmz1
https://oreil.ly/0wAwM
https://oreil.ly/AB8zV
https://oreil.ly/iS-9y

This involves the protection of data in use by conducting
computation in an attested hardware-based Trusted
Execution Environment.

Secure multiparty computation (SMPC)

This technique allows at least two different parties to jointly
process their combined information without requiring each
party to share all of its information with the other parties.

Zero-knowledge proof (ZKP)

This is any procedure in which a prover (typically a person)
can prove to another party (verifier) that they have a secret
(something they know but the verifier does not).

Summary
This chapter began with a discussion about the obstacles that organizations
face when implementing zero initiatives, such as the shift in mindset required
by leadership in order to embrace zero trust security. It also addressed
shadow IT, which is prevalent in large organizations, conceals the actual use
of IT infrastructure and applications, and serves as an impediment to the
implementation of zero trust initiatives.

It also addressed the obstacles posed by siloed organizations and their
ineffective cross-organization collaboration patterns, which impede the
implementation of zero trust initiatives, as zero trust requires that teams
collaborate in harmony. In the absence of a consolidated and cohesive set of
zero trust tools, organizations need to evaluate an excessive number of
vendors, which presents its own set of challenges, such as a lack of standard
API offerings and incompatible UX, as well as disparate licensing models.

As components of zero trust architecture in both the control plane and the
data plane necessitate communication patterns that may not be typical of
existing systems, scalability and performance issues may also be encountered
by organizations.

https://oreil.ly/ctAlb
https://oreil.ly/wjX4s

Finally, you learned about cutting-edge technological innovations such as
quantum computing, which will have a significant impact on public key
infrastructure in particular, as well as artificial intelligence and privacy-
enhancing technologies, which play a crucial role in enhancing data
protection. All of these areas are crucial for any organization to closely
monitor and remain current on, both from a zero trust perspective and from a
more general cybersecurity standpoint.

As we conclude this book, we would like to congratulate you on reading it
and sincerely hope that you now have a firm understanding of zero trust
security. We encourage you to put these concepts into practice!

We will leave you with a memorable line from the film The Matrix:

I can only show you the door, you’re the one that has to walk through it.
—Morpheus

Appendix. A Brief Introduction
to Network Models

Networking stacks have many different responsibilities in transmitting data
over a network. As such, it would be easy for a networking stack to become
a jumbled mess of code. Therefore, the industry long ago decided to spend
the effort to clearly define a set of standardized layers in a networking stack.
Each layer is responsible for some portion of the job of transmitting data
over the wire. Lower layers deliver functionality and guarantees to higher
layers in the stack.

Building up these layers isn’t just useful for organizing code. These layer
definitions are often used to describe where new technology operates in the
stack. For example, you might have heard of a layer-7 or layer-4 load
balancer. A load balancer distributes traffic load across a set of backend
machines, but the layer at which it operates greatly determines its
capabilities. A layer-7 load balancer, for example, can make decisions about
where to route traffic based on details in an HTTP request, like the requested
path or a particular header. HTTP operates at layer 7, so this data is
available to inspect. A layer-4 load balancer, by contrast, does not consider
layer-7 data, and therefore can only pass traffic based on simpler connection
details, like the source IP and port.

There are many different network models. Most of these models can be
roughly mapped to equivalents in other network models, but sometimes the
boundaries can be a bit fuzzy. For this book, we will only focus on two
network models: the Open Systems Interconnection (OSI) network model and
the TCP/IP (internet protocol suite) network model. Understanding the
boundaries of these two models will help in later discussions about where
zero trust responsibilities should be handled in the network model.

Network Layers, Visually
The idea of a layer might be strange at first, though a simplistic way to
understand the concept is by comparing them to Russian nesting dolls. Each
layer typically contains the next, encapsulated by it in a section known as the
payload (Figure A-1).

Figure A-1. Lower network layers transport higher-layer traffic in their payload fields, creating
a nested structure inside a single packet

OSI Network Model
The OSI network model was published in 1984 after being merged from two
separate documents started several years earlier. The model has been
published by two separate standards bodies: the International Organization
for Standardization (ISO) published ISO 7498, while the Telecommunication
Standardization Sector of the International Telecommunication Union (ITU-
T) published X.200.

The model itself is extracted from experiences of building several networks
at the time, ARPANET (the Advanced Research Projects Agency Network)
being the most well known. The model defines seven distinct layers

(explained in the following sections), each of which owns a portion of the
responsibilities for transmitting data.

Layer 1—Physical Layer
The physical layer is defined as the interface between a network device and
the physical medium over which network transmission occurs. This can
include things like pin layout, line impedance, voltage, and frequency. The
parameters of the physical layer (sometimes referred to as a PHY) depend on
the kind of medium used. Twisted pair, coaxial cabling, and radio waves are
examples of media in common use today.

Layer 2—Data Link Layer
The data link layer is responsible for the transmission of data over the
physical layer. This layer only considers data transmission between directly
connected nodes. There is no concept of transmission between
interconnected networks. Ethernet (802.3) is the most well-known protocol
operating at this layer.

Layer 3—Network Layer
The network layer is responsible for transmitting data packets between two
interconnected nodes. At this layer, packets might need to transverse multiple
layer-2 segments to reach their destination, so this includes concepts to allow
routing data to its destination by inspecting a destination address. IP is often
said to operate at this layer, but the boundaries can be a bit fuzzy, as we will
explore later.

Layer 4—Transport Layer
The transport layer builds upon the simple packet transmission capabilities
of layer 3, usually as an intermediary protocol designed to augment layer 3
with many desirable services:

Stateful connections

Multiplexing

Ordered delivery

Flow control

Retransmission

These services might look similar to the services that a protocol like TCP
provides. In fact, TCP is a layer 4 protocol; however, in a way similar to IP,
this association can be a bit awkward.

Not all of these services need to be provided by a protocol operating at this
level. UDP, for example, is a layer 4 protocol that offers only one of these
services (multiplexing). It remains a layer 4 protocol because it is an
intermediary protocol that is directly encapsulated by layer 3.

Layer 5—Session Layer
The session layer isn’t commonly discussed in most networks. This layer
provides an additional layer of state over connections, allowing for a
communication resumption and communication through an intermediary.
Several VPNs (PPTP, L2TP) and proxy protocols (SOCKS) operate at this
layer.

Layer 6—Presentation Layer
The presentation layer is the layer that application developers will most
commonly interact with. This layer is responsible for handling the translation
between application data (often represented as structural data) and
transmittable data streams. In addition to this serialization responsibility, this
layer is often responsible for crosscutting concerns like encryption and
compression. TLS is a well-known protocol operating at this layer, though it
operates at layer 6 only after the session is established (which happens at
layer 5—the process of changing from a lower layer to a higher layer is
sometimes referred to as an upgrade).

Layer 7—Application Layer
The application layer is the highest layer in the OSI model. This layer
provides the high-level communication protocols that an application uses to
communicate on the network. Some common protocols at this layer are DNS,
HTTP, and SSH.

TCP/IP Network Model
The TCP/IP network model is another important network model. This model
deals with the protocols most often found on the internet today.

Unlike the OSI model, the TCP/IP model does not try to define strict layers
with clear boundaries. In fact, RFC 3439
(https://www.ietf.org/rfc/rfc3439.txt), which documents the “philosophical
guidelines” that internet architects use, has a section entitled “Layering
Considered Harmful.” Still, the model is said to define the following rough
layers, from lowest to highest:

Link layer

Internet layer

Transport layer

Application layer

These layers can be roughly mapped to the OSI model, but the mappings are
not perfect. The application layer roughly covers layers 5–7 in the OSI
model. The transport layer roughly maps to layer 4, though its introduction of
the concept of a port gives it some layer 5 characteristics. The internet layer
is similarly generally associated with layer 3. The abstraction is leaky,
however, as higher-level protocols like ICMP, or Internet Control Message
Protocol (which are transmitted via IP), concern themselves with details of
how traffic is routed around the internet.

https://www.ietf.org/rfc/rfc3439.txt

Index

A

Address Allocation for Private Internets (RFC 1597), Birth of Private IP
Address Space

Advanced Encryption Standard (AES), Encrypting data using a TPM,
Payload Encryption, Bulk encryption

Advanced Packaging Tool (APT), Distribution Security

adversarial view, The Adversarial View-Summary

attack vectors, Attack Vectors

cybersecurity insurance, Role of Cyber Insurance

identity and access, Identity and Access-Privilege Escalation and
Lateral Movement

credential theft, Credential Theft

privilege escalation and lateral movement, Privilege Escalation
and Lateral Movement

infrastructure and networks, Infrastructure and Networks-Physical
Coercion

control plane security, Control Plane Security-Control Plane
Security

distributed denial of service attacks, Distributed Denial of Service
(DDoS) Attacks

endpoint enumeration, Endpoint Enumeration

invalidation, Invalidation

man-in-the-middle attacks, Man-in-the-Middle (MitM) Attacks

phishing, Phishing

physical coercion, Physical Coercion-Physical Coercion

untrusted computing platform, Untrusted Computing Platform

potential pitfalls and dangers, Potential Pitfalls and Dangers

AES (Advanced Encryption Standard), Encrypting data using a TPM,
Payload Encryption, Bulk encryption

agents, Context-Aware Agents-Summary

authorization, not authentication, Agents Are Not for Authentication

balancing rigidity and fluidity, Rigidity and Fluidity, at the Same Time

data co-location, How Is an Agent Used?

data contained in, What’s in an Agent?

defined, What Is an Agent?

exposing, How to Expose an Agent?

sharing data fields using JWT, In the Meantime?

standardization, Standardization Desirable-Standardization Desirable

standardization as implementation task, In the Meantime?-In the
Meantime?

uses for, How Is an Agent Used?

using for trust scores, Using network agents for scoring

volatility, Agent Volatility

AH (Authentication Header), Network Support Issues

AI (artificial intelligence), Artificial Intelligence-Artificial Intelligence

Amazon EC2, Host Filtering

Android, firewalls and, Host Filtering

Apple iOS, Upgrade-Only Policy

application layer (OSI network model), Layer 7—Application Layer

applications, Trusting Applications-Summary

humans in the loop, Humans in the Loop-Humans in the Loop

protecting application and data privacy, Protecting Application and
Data Privacy-Role of Attestation

attestation, Role of Attestation

confidential computing, Confidential Computing

hardware-based root-of-trust, Understanding Hardware-Based
Root-of-Trust (RoT)

hosting applications in public cloud, When You Host Applications
in a Public Cloud, How Can You Trust It?

runtime security, Runtime Security-Active Monitoring

active monitoring, Active Monitoring-Active Monitoring

applications monitoring applications, Active Monitoring

isolation, Isolation-Isolation

secure coding practices, Secure Coding Practices

scenario walkthrough, Scenario Walkthrough-Request Analysis

SDLC, Secure Software Development Lifecycle (SDLC)-Continuous
Improvement

coding and implementation, Coding and Implementation

continuous improvement, Continuous Improvement

deployment and maintenance, Deployment and Maintenance

peer reviews and code audits, Peer Reviews and Code Audits

quality assurance and testing, Quality Assurance and Testing

requirements and design, Requirements and Design

static/dynamic code analysis, Static and Dynamic Code Analysis

trusting an instance, Trusting an Instance-Authorized Instances

authorized instances, Authorized Instances-Authorized Instances

trusted third parties in instance authorization, Authorized Instances

upgrade-only policy, Upgrade-Only Policy

trusting builds, Trusting Builds-Decoupling Release and Artifact
Versions

decoupling release/artifact versions, Decoupling Release and
Artifact Versions

reproducible builds, Reproducible Builds

SBOM—the risk, Software Bill of Materials (SBOM): The Risk-
Software Bill of Materials (SBOM): The Risk

trusted input for trusted output, Trusted Input, Trusted Output

virtualized build environments, Reproducible Builds

trusting distribution, Trusting Distribution-Trusting a Distribution
Network

distribution security, Distribution Security

integrity and authenticity, Integrity and Authenticity-Integrity and
Authenticity

promoting an artifact, Promoting an Artifact

trusting a distribution network, Trusting a Distribution Network

trusting source code, Trusting Source Code-Code Reviews

authentic code and audit trail, Authentic Code and the Audit Trail-
Authentic Code and the Audit Trail

code reviews, Code Reviews

securing the repository, Securing the Repository

understanding the application pipeline, Understanding the Application
Pipeline-Understanding the Application Pipeline

defending against software supply chain attacks, Understanding the
Application Pipeline

supply chain security, Understanding the Application Pipeline

APT (Advanced Packaging Tool), Distribution Security

artificial intelligence (AI), Artificial Intelligence-Artificial Intelligence

asymmetric cryptography, Bulk encryption

attacks/attackers (see adversarial view)

attestation, Role of Attestation

authentication

authenticating trust, Authenticating Trust-Public PKI Is Better than None

authenticity without encryption, Authenticity Without Encryption?-
Authenticity Without Encryption?

authorization versus, Agents Are Not for Authentication

certificate authorities, What Is a Certificate Authority?

devices, Authenticating Devices with the Control Plane-Hardware-
Based Zero Trust Supplicant?

hardware-based zero trust supplicant, Hardware-Based Zero Trust
Supplicant?

HSM and TPM attack vectors, HSM and TPM Attack Vectors-
HSM and TPM Attack Vectors

TPM basics, TPMs-Remote attestation

TPMs for authenticating devices, TPMs for Device Authentication

X.509 standard, X.509-X.509 for device authentication

encryption versus, Encryption Versus Authentication

group, Authenticating and Authorizing a Group-Red October

DNS Root Zone Signing Ceremony, Red October

Red October, Red October

Shamir’s Secret Sharing, Shamir’s Secret Sharing

how to authenticate identity, How to Authenticate Identity-Behavioral
Patterns

human-based, Nothing Beats Meatspace

human-driven, Least Privilege

identity, How to Authenticate Identity-Behavioral Patterns

behavioral biometrics/authentication, Behavioral Patterns

biometrics, Something You Are: Biometrics

certificates, Something You Have: Certificates

passwords, Something You Know: Passwords

security tokens, Something You Have: Security Tokens

TOTP, Something You Have: TOTP

implementation phase of realizing a zero trust network, Implementation
Phase: Application Authentication and Authorization-Endpoint Security

load balancers/proxies, Authenticating Load Balancers and Proxies

network flows before processing, All Network Flows MUST Undergo
Authentication Before Processing-Devices SHOULD be regularly
scanned, patched, and rotated

application-layer endpoints for performing all authentication and
encryption, Authentication and encryption MUST be performed by
the application-layer endpoints

encryption of flows before transmission, All network flows
SHOULD be encrypted before transmission

enforcing system access by enumerating all network flows, System
access SHOULD be enforced by enumerating all network flows

flow data as source of truth, System access SHOULD be enforced
by enumerating all network flows

regular scanning/patching/rotating of devices, Devices SHOULD
be regularly scanned, patched, and rotated

using only private PKI providers, Authentication SHOULD NOT
rely on public PKI providers—private PKI systems should be used
instead

using strongest authentication/encryption suites, The strongest
authentication and encryption suites available SHOULD be used
within the network

out-of-band, Out-of-Band Authentication-Moving Toward a Local Auth
Solution

moving toward a local auth solution, Moving Toward a Local Auth
Solution

SPIFFE, Workload Identities

SSO, Single Sign-On-Single Sign-On

workload identities, Workload Identities

PKI’s importance in zero trust, Importance of PKI in Zero Trust

private versus public PKI, Private Versus Public PKI

public PKI as better than none, Public PKI Is Better than None

strong authentication, Strong Authentication-Strong Authentication

when to authenticate identity, When to Authenticate Identity-Caching
Identity and Trust

authenticating for trust, Authenticating for Trust

caching identity and trust, Caching Identity and Trust

trust as the authentication driver, Trust as the Authentication Driver

use of multiple channels, The Use of Multiple Channels

Authentication Header (AH), Network Support Issues

authoritative identity, Identity Authority

authorization

authentication versus, Agents Are Not for Authentication

forwarding and routing authorization, Intermediary Filtering

implementation phase of realizing a zero trust network, Implementation
Phase: Application Authentication and Authorization-Endpoint Security

instances, Authorized Instances-Authorized Instances

revoking, Agents Are Not for Authentication

using device data for user authorization, Using Device Data for User
Authorization

authorization architecture, Authorization Architecture-Summary

basics, Authorization Architecture-Authorization Architecture

data store component, Data Stores-Data Stores

enforcement component, Enforcement-Enforcement

policy engine component, Policy Engine-Policy Reviews

elements of good policy, What Makes Good Policy?-What Makes
Good Policy?

policy definition within the organization, Who Defines Policy?

policy reviews, Policy Reviews

policy storage, Policy Storage

scenario walkthrough, Scenario Walkthrough-Scenario Walkthrough

trust engine component, Trust Engine-Exposing Scores Considered
Risky

automation, as enabler of zero trust network, Automation as an Enabler

B

behavioral analysis, Phishing

behavioral biometrics/authentication, Behavioral Patterns

best-effort agent, Rigidity and Fluidity, at the Same Time

BeyondCorp (see Google BeyondCorp (case study))

biometrics, Something You Are: Biometrics

bookended filtering, Bookended Filtering-Bookended Filtering

Bring Your Own Device (BYOD), Evolution of the Threat Landscape

BSD (Berkeley Software Distribution) systems, firewalls and, Host Filtering

builds, Trusting Builds-Decoupling Release and Artifact Versions

decoupling release/artifact versions, Decoupling Release and Artifact
Versions

reproducible builds, Reproducible Builds

SBOM—the risk, Software Bill of Materials (SBOM): The Risk-
Software Bill of Materials (SBOM): The Risk

trusted input for trusted output, Trusted Input, Trusted Output

virtualized build environments, Reproducible Builds

bulk encryption, Bulk encryption-Bulk encryption

C

C-SCRM (Cybersecurity Supply Chain Risk Management), Understanding the
Application Pipeline

caching, Caching Identity and Trust

CASBs (cloud access security brokers), Cloud Access Security Brokers
(CASBs) and Identity Federation, Shadow IT

“cattle”, What Makes Good Policy?

Central Authentication Service (CAS), Single Sign-On

certificate authorities (CAs)

defined, What Is a Certificate Authority?

legal issues, Identity Security in Static and Dynamic Systems

X.509 standard, Certificate chains and certification authorities

certificate chains, Certificate chains and certification authorities

certificates, Strong Authentication, Something You Have: Certificates

challenges to implementation/realization, Challenges and the Road Ahead-
Key Takeaways

lack of cohesive zero trust products, Lack of Cohesive Zero Trust
Products

mindset shift, Mindset Shift

scalability and performance, Scalability and Performance

shadow IT, Shadow IT

siloed organizations, Siloed Organizations

channel security, The Use of Multiple Channels

Chef, Secure Introduction, Configuration Management as an Automation
Platform-Decentralized User Management

CISA (see Cybersecurity and Infrastructure Security Agency)

Cisco Secure Network Analytics, Understanding Your Flows

CISO Perspectives and Progress in Deploying Zero Trust (CSA publication),
Cloud Security Alliance (CSA)

client systems, secure introduction for, Secure Introduction

client-side migrations, server-side migrations versus, Client-Side Versus
Server-Side Migrations-Client-Side Versus Server-Side Migrations

client/server interactions, mTLS for, A Pragmatic Approach

cloud access security brokers (CASBs), Cloud Access Security Brokers
(CASBs) and Identity Federation, Shadow IT

cloud deployments

attestation in the public cloud, Role of Attestation

“pets” versus “cattle”, What Makes Good Policy?

protecting application and data privacy, When You Host Applications in
a Public Cloud, How Can You Trust It?

zero trust as perfect fit for, Applied in the Cloud-Applied in the Cloud

Cloud Security Alliance (CSA), Cloud Security Alliance (CSA)

Cloudflare Red October, Red October

CM (see configuration management)

code (see source code)

code audits, Peer Reviews and Code Audits

code reviews, Code Reviews

code signing ceremonies, Humans in the Loop

Colonial Pipeline cyberattack, Zero Trust Fundamentals

Common Vulnerabilities and Exposures (CVE), Common Threat Models

Common Vulnerability Scoring System (CVSS), Common Threat Models

communication channels

channel security, The Use of Multiple Channels

use of multiple channels, The Use of Multiple Channels

communication patterns, as trust signal, Network Communication Patterns

confidential computing, HSM and TPM Attack Vectors, Confidential
Computing, Privacy-Enhancing Technologies

confidentiality, privacy versus, Endpoint Enumeration

configuration management (CM), Software Configuration Management-
Secure Source of Truth, “Cheating” with Configuration
Management-“Cheating” with Configuration Management

CM-based inventory, CM-Based Inventory

infrastructure management with, “Cheating” with Configuration
Management-“Cheating” with Configuration Management

inventory database, Inventory Management

searchable inventory, Searchable Inventory

single source of truth, Secure Source of Truth

containerized environments, Identity Security in Static and Dynamic Systems

content-addressable storage, Authentic Code and the Audit Trail

context-aware agents (see agents)

Conti ransomware group, Dynamic Trust

continuous improvement, Continuous Improvement

control plane

authenticating devices with, Authenticating Devices with the Control
Plane-Hardware-Based Zero Trust Supplicant?

hardware-based zero trust supplicant, Hardware-Based Zero Trust
Supplicant?

HSM and TPM attack vectors, HSM and TPM Attack Vectors-
HSM and TPM Attack Vectors

TPM basics, TPMs-Remote attestation

TPMs for authenticating devices, TPMs for Device Authentication

X.509 standard, X.509-X.509 for device authentication

basics, Introducing the Zero Trust Control Plane

data plane versus, Control Plane Versus Data Plane-Control Plane
Versus Data Plane

security, Control Plane Security-Control Plane Security

controller-less architecture, Controller-Less Architecture-“Cheating” with
Configuration Management

credential rotation, Strong Authentication

credential theft, Credential Theft

credentials, revoking, Agents Are Not for Authentication

cryptographic hashes, Authentic Code and the Audit Trail

CSA (Cloud Security Alliance), Cloud Security Alliance (CSA)

CVE (Common Vulnerabilities and Exposures), Common Threat Models

CVSS (Common Vulnerability Scoring System), Common Threat Models

Cybersecurity and Infrastructure Security Agency (CISA)

SBOM, Understanding the Application Pipeline

Zero Trust Maturity Model, Cybersecurity and Infrastructure Security
Agency (CISA)-Cybersecurity and Infrastructure Security Agency
(CISA)

cybersecurity insurance, Role of Cyber Insurance

Cybersecurity Supply Chain Risk Management (C-SCRM), Understanding the
Application Pipeline

D

DAG (directed acyclic graph), Authentic Code and the Audit Trail

DAST (dynamic application security testing), Static and Dynamic Code
Analysis

data link layer (OSI network model), Layer 2—Data Link Layer

data plane, control plane versus, Control Plane Versus Data Plane-Control
Plane Versus Data Plane

data store (authorization architecture component), Data Stores-Data Stores

Datadog Network Performance Monitoring, Understanding Your Flows

DDoS (distributed denial of service) attacks, Distributed Denial of Service
(DDoS) Attacks

decentralized authentication, Single Sign-On

The Definition of Modern Zero Trust (Forrester publication), Forrester

Department of Defense (DoD) publications

Zero Trust Capability Execution Roadmap, Department of Defense
(DoD)

Zero Trust Reference Architecture, Department of Defense (DoD)-
Department of Defense (DoD)

Zero Trust Strategy, Department of Defense (DoD)

Zero Trust strategy placemat, Department of Defense (DoD)

device agent/gateway-based deployment, Device agent/gateway-based
deployment

device application sandboxing, Device application sandboxing

devices, Trusting Devices-Summary

authenticating devices with the control plane, Authenticating Devices
with the Control Plane-Hardware-Based Zero Trust Supplicant?

hardware-based zero trust supplicant, Hardware-Based Zero Trust
Supplicant?

HSM and TPM attack vectors, HSM and TPM Attack Vectors-
HSM and TPM Attack Vectors

TPM basics, TPMs-Remote attestation

TPMs for device authentication, TPMs for Device Authentication

X.509 standard, X.509-X.509 for device authentication

bootstrapping trust in hardware, Bootstrapping Trust-Identity Security in
Static and Dynamic Systems

generating/securing identity, Generating and Securing Identity

identity security in static and dynamic systems, Identity Security in
Static and Dynamic Systems-Identity Security in Static and
Dynamic Systems

device compliance change signals, Unified Endpoint Management
(UEM)

inventory management, Inventory Management-Secure Introduction

knowing what to expect, Knowing What to Expect-Knowing What
to Expect

secure introduction, Secure Introduction-Secure Introduction

regular scanning/patching/rotating, Devices SHOULD be regularly
scanned, patched, and rotated

reimaging, Devices SHOULD be regularly scanned, patched, and
rotated

renewing and measuring device trust, Renewing and Measuring Device
Trust-Unified Endpoint Management (UEM)

local measurement, Local Measurement

remote measurement, Remote Measurement

unified endpoint management, Unified Endpoint Management
(UEM)-Unified Endpoint Management (UEM)

scenario walkthrough, Scenario Walkthrough-Request Analysis

deleting an email, Use Case: Bob Wants to Delete an Email-
Request Analysis

sending a document for printing, Use Case: Bob Wants to Send a
Document for Printing-Request Analysis

software configuration management, Software Configuration
Management-Secure Source of Truth

CM-based inventory, CM-Based Inventory

searchable inventory, Searchable Inventory

single source of truth, Secure Source of Truth

trust signals, Trust Signals-Machine Learning

historical access, Historical Access

location, Location

machine learning, Machine Learning

network communication patterns, Network Communication Patterns

time since image, Time Since Image

using device data for user authorization, Using Device Data for User
Authorization

dialer-based attacks, Evolution of the Threat Landscape

directed acyclic graph (DAG), Authentic Code and the Audit Trail

distributed denial of service (DDoS) attacks, Distributed Denial of Service
(DDoS) Attacks

distribution, Trusting Distribution-Trusting a Distribution Network

distribution security, Distribution Security

integrity and authenticity, Integrity and Authenticity-Integrity and
Authenticity

promoting an artifact, Promoting an Artifact

trusting a distribution network, Trusting a Distribution Network

DMZ hosts, Evolution of the Threat Landscape

DNS Root Zone Signing Ceremony, Red October

documents, printing (scenario walkthrough), Use Case: Bob Wants to Send a
Document for Printing-Request Analysis

DoD (see Department of Defense publications)

dynamic application security testing (DAST), Static and Dynamic Code
Analysis

dynamic systems, identity security in, Identity Security in Static and Dynamic
Systems-Identity Security in Static and Dynamic Systems

dynamic trust, Dynamic Trust-Dynamic Trust

E

egress filtering (see bookended filtering)

802.1X protocol, Perimeter Versus Zero Trust

EK (endorsement key), Remote attestation, HSM and TPM Attack Vectors

email access while connected to a public anonymous network (scenario
walkthrough), Scenario Walkthrough-Request Analysis

email deletion (scenario walkthrough), Use Case: Bob Wants to Delete an
Email-Request Analysis

Embracing a Zero Trust Security Model (NSA document), National Security
Agency (NSA)-National Security Agency (NSA)

Encapsulating Security Payload (ESP), Network Support Issues

enclave gateway model, Enclave gateway model

encrypted traffic, monitoring, Trust Score

encryption

as incomplete solution to key theft, Intermediary keys and passphrases

authentication versus, Encryption Versus Authentication

authenticity without, Authenticity Without Encryption?-Authenticity
Without Encryption?

TPM for, Encrypting data using a TPM

endorsement key (EK), Remote attestation, HSM and TPM Attack Vectors

endpoint enumeration, Endpoint Enumeration

endpoint security, Client-Side Versus Server-Side Migrations-Client-Side
Versus Server-Side Migrations

ESP (Encapsulating Security Payload), Network Support Issues

European Union Directive 2022/2555, European Union

Executive Order (EO) 14028—Improving the Nation’s Cybersecurity, Role
of Zero Trust in National Cybersecurity, Executive Order (EO) 14028—
Improving the Nation’s Cybersecurity-Executive Order (EO) 14028—
Improving the Nation’s Cybersecurity

explicit authenticity, Message authenticity

F

Fault Injection attack, HSM and TPM Attack Vectors

FBI Internet Crime Report, Zero Trust Architecture Standards, Frameworks,
and Guidelines

filtering, Filtering-Intermediary Filtering

bookended filtering, Bookended Filtering-Bookended Filtering

forwarding and routing authorization, Intermediary Filtering

host filtering, Host Filtering-Host Filtering

intermediary filtering, Intermediary Filtering-Intermediary Filtering

financial application, sending sensitive data for computation, Scenario
Walkthrough-Request Analysis

financial reports, viewing, Use Case: Bob Wants to View a Sensitive
Financial Report-Request Analysis

firewall exceptions, Perimeter Shortcomings

FireWall KNock OPerator (fwknop), FireWall KNock OPerator (fwknop)-
HMAC

firewalls (see filtering)

first packet, Bootstrapping Trust: The First Packet-HMAC

FireWall KNock OPerator, FireWall KNock OPerator (fwknop)-HMAC

HMAC, HMAC

payload encryption, Payload Encryption

short-lived expectations, Short-Lived Exceptions

SPA payload, SPA Payload

first-packet problem, Bootstrapping Trust: The First Packet

flows (see network flows)

Forrester, Zero Trust Architecture Standards, Frameworks, and Guidelines,
Forrester

forward proxies, Zero Trust Proxies

forward secrecy, Encryption Versus Authentication

frameworks (see standards, frameworks, and guidelines for zero trust
architecture)

fundamentals of zero trust, Zero Trust Fundamentals-Summary

automation as enabler of zero trust network, Automation as an Enabler

cloud deployment, Applied in the Cloud-Applied in the Cloud

control plane, Introducing the Zero Trust Control Plane

fundamental assertions, What Is a Zero Trust Network?-What Is a Zero
Trust Network?

perimeter model, Evolution of the Perimeter Model-The Contemporary
Perimeter Model

contemporary perimeter model, The Contemporary Perimeter
Model

global IP address space management, Managing the Global IP
Address Space

NAT origins, Birth of NAT

private IP address space origins, Birth of Private IP Address
Space

private network–public network connection, Private Networks
Connect to Public Networks

shortcomings, Perimeter Shortcomings-Perimeter Shortcomings

zero trust model versus, Perimeter Versus Zero Trust-Perimeter
Versus Zero Trust

role of zero trust in national cybersecurity, Role of Zero Trust in
National Cybersecurity

threat landscape evolution, Evolution of the Threat Landscape-
Evolution of the Threat Landscape

trust in context of zero trust network, Where the Trust Lies

zero trust network basics, What Is a Zero Trust Network?-What Is a
Zero Trust Network?

fuzzing, Secure Coding Practices

fwknop (FireWall KNock OPerator), FireWall KNock OPerator (fwknop)

G

Gartner, Zero Trust Architecture Standards, Frameworks, and Guidelines,
Gartner

gateway-based/device agent deployment, Device agent/gateway-based
deployment

geo-location, Trust Signals

GFE (Google Front End), Leveraging and Extending the GFE-Mutual
authentication between the proxy and the backend

Git, Authentic Code and the Audit Trail

Gnu Privacy Guard (GnuPG), Authentic Code and the Audit Trail, Payload
Encryption

golden images, Bootstrapping Trust

Google BeyondCorp (case study), Case Studies-Conclusion

challenges with multiplatform authentication, Challenges with
Multiplatform Authentication

lessons learned, Lessons Learned-Sparse data sets

leveraging/extending the GFE, Leveraging and Extending the GFE-
Mutual authentication between the proxy and the backend

major components, The Major Components of BeyondCorp-
Implementing inventory-based access control

migrating to BeyondCorp, Migrating to BeyondCorp-Exemption
handling

Google Front End (GFE), Leveraging and Extending the GFE-Mutual
authentication between the proxy and the backend

groups

authentication of, Authenticating and Authorizing a Group-Red October

DNS Root Zone Signing Ceremony, Red October

Red October, Red October

Shamir’s Secret Sharing, Shamir’s Secret Sharing

guidelines (see standards, frameworks, and guidelines for zero trust
architecture)

H

hardware (see devices)

hardware firewalls, Evolution of the Threat Landscape

hardware security module (see HSM)

hardware-based root-of-trust (RoT), Understanding Hardware-Based Root-
of-Trust (RoT)

hashed message authentication code (HMAC), HMAC

Heartbleed attack, Knowing What to Expect

historical access, as trust signal, Historical Access

historical data stores, Data Stores

HMAC (hashed message authentication code), HMAC

homomorphic encryption, Privacy-Enhancing Technologies, Privacy-
Enhancing Technologies

host filtering, Host Filtering-Host Filtering

HSM (hardware security module)

attacks on, HSM and TPM Attack Vectors-HSM and TPM Attack
Vectors

for code signing ceremonies, Humans in the Loop

private key storage, Generating and Securing Identity, Private key
storage challenges

human-based authentication, Nothing Beats Meatspace

human-driven authentication, Least Privilege

I

IANA (Internet Assigned Numbers Authority), Managing the Global IP
Address Space

identity authority, Identity Authority-Identity Authority

identity federation, Cloud Access Security Brokers (CASBs) and Identity
Federation

identity recovery systems, attacks on, Bootstrapping Identity in a Private
System

identity(ies), Trusting Identities-Summary

access and, Identity and Access-Privilege Escalation and Lateral
Movement

credential theft, Credential Theft

privilege escalation and lateral movement, Privilege Escalation
and Lateral Movement

attacking identity recovery systems, Bootstrapping Identity in a Private
System

authenticating, How to Authenticate Identity-Behavioral Patterns

behavioral biometrics/authentication, Behavioral Patterns

biometrics, Something You Are: Biometrics

certificates, Something You Have: Certificates

devices with X.509 standard, Device identity and X.509-Device
identity and X.509

passwords, Something You Know: Passwords

security tokens, Something You Have: Security Tokens

TOTP, Something You Have: TOTP

authenticating groups, Authenticating and Authorizing a Group-Red
October

DNS Root Zone Signing Ceremony, Red October

Red October, Red October

Shamir’s Secret Sharing, Shamir’s Secret Sharing

bootstrapping identity in a private system, Bootstrapping Identity in a
Private System-Expectations and Stars

expectations and stars, Expectations and Stars

government-issued identification, Government-Issued
Identification

human-based authentication, Nothing Beats Meatspace

generating/securing identity in devices, Generating and Securing Identity

identity authority, Identity Authority-Identity Authority

identity security in static and dynamic systems, Identity Security in
Static and Dynamic Systems-Identity Security in Static and Dynamic
Systems

out-of-band authentication, Out-of-Band Authentication-Moving Toward
a Local Auth Solution

moving toward a local auth solution, Moving Toward a Local Auth
Solution

single sign-on, Single Sign-On-Single Sign-On

SPIFFE, Workload Identities

workload identities, Workload Identities

scenario walkthrough, Use Case: Bob Wants to View a Sensitive
Financial Report-Request Analysis

storing identity, Storing Identity-Directory Maintenance

directory maintenance, Directory Maintenance

user directories, User Directories

trust signals, Trust Signals-Trust Signals

users as active participants in system security, See Something, Say
Something

when to authenticate identity, When to Authenticate Identity-Caching
Identity and Trust

authenticating for trust, Authenticating for Trust

caching identity and trust, Caching Identity and Trust

trust as the authentication driver, Trust as the Authentication Driver

use of multiple channels, The Use of Multiple Channels

IKE (Internet Key Exchange), IKE and IPsec

imaging a device, Time Since Image

immutable builds, Decoupling Release and Artifact Versions

implementation challenges (see challenges to implementation/realization)

Implementing a Zero Trust Architecture (NCCoE document NIST SP 1800),
National Cybersecurity Center of Excellence (NCCoE)

Improving the Nation’s Cybersecurity (EO 14028), Role of Zero Trust in
National Cybersecurity, Executive Order (EO) 14028—Improving the
Nation’s Cybersecurity-Executive Order (EO) 14028—Improving the
Nation’s Cybersecurity

informal identity, Identity Authority

ingress filtering (see bookended filtering)

insider threats, Common Threat Models

instances, Trusting an Instance-Authorized Instances

authorized instances, Authorized Instances-Authorized Instances

trusted third parties in instance authorization, Authorized Instances

upgrade-only policy, Upgrade-Only Policy

Integrating SDP and DNS: Enhanced Zero Trust Policy Enforcement, Cloud
Security Alliance (CSA)

intermediary filtering, Intermediary Filtering-Intermediary Filtering

intermediary keys, TPMs and, Intermediary keys and passphrases

International Organization for Standardization (ISO), International
Organization for Standardization (ISO)

Internet Assigned Numbers Authority (IANA), Managing the Global IP
Address Space

Internet Key Exchange (IKE), IKE and IPsec

Internet Protocol Security (see IPsec)

inventory data stores, Data Stores

inventory management

CM as an inventory database, Inventory Management

CM-based inventory, CM-Based Inventory

for devices, Inventory Management-Secure Introduction

knowing what to expect, Knowing What to Expect-Knowing What to
Expect

secure introduction, Secure Introduction-Secure Introduction

iOS, Upgrade-Only Policy, Host Filtering

IP, Where Should Zero Trust Be in the Network Model?

IP address space

global IP address space management, Managing the Global IP Address
Space

private IP address space origins, Birth of Private IP Address Space

The IP Network Address Translator (RFC 1631), Birth of NAT

IPsec (Internet Protocol Security), Where Should Zero Trust Be in the
Network Model?-IKE and IPsec

application support issues, Application Support Issues

client/server split, Client and Server Split

device support issues, Device Support Issues

for server/server interactions, A Pragmatic Approach

Microsoft server isolation, Microsoft Server Isolation

network support issues, Network Support Issues

ISO (International Organization for Standardization), International
Organization for Standardization (ISO)

isolation, of deployed applications, Isolation-Isolation

J

JSON Web Token (JWT), In the Meantime?-In the Meantime?

K

Kerberos, Single Sign-On

key pairs, X.509 standard and, Public and private components

keys

binding to entities, Importance of PKI in Zero Trust

private (see private keys)

public (see public key entries)

Kipling Method, Policy Reviews

Kudankulam Nuclear Power Plant cyberattack, Zero Trust Fundamentals

L

LAPSUS$, Dynamic Trust

large language models (LLMs), Artificial Intelligence

layers (see network layers)

least privilege, Least Privilege-Control Plane Versus Data Plane

control plane versus data plane, Control Plane Versus Data Plane-
Control Plane Versus Data Plane

dynamic trust, Dynamic Trust-Dynamic Trust

human-driven authentication, Least Privilege

privacy as, Least Privilege

trust score basics, Trust Score

trust score challenges, Challenges with Trust Scores

legal issues, certificate authorities and, Identity Security in Static and
Dynamic Systems

Linux, firewalls and, Host Filtering

LLMs (large language models), Artificial Intelligence

load balancers, Authenticating Load Balancers and Proxies

local measurement, Local Measurement

location, as trust signal, Location

M

machine learning (ML)

and behavioral authentication, Behavioral Patterns

trust score assistance, Trust Engine-Trust Engine, Machine Learning

macOS, firewalls and, Host Filtering

malware, Evolution of the Threat Landscape

man-in-the-middle (MitM) attacks, Man-in-the-Middle (MitM) Attacks

ManageEngine Netflow Analyzer, Understanding Your Flows

management information base (MIB), Standardization Desirable-
Standardization Desirable

managing trust, Managing Trust-Summary

authenticating trust, Authenticating Trust-Public PKI Is Better than None

certificate authorities, What Is a Certificate Authority?

PKI’s importance in zero trust, Importance of PKI in Zero Trust

private versus public PKI, Private Versus Public PKI

public PKI as better than none, Public PKI Is Better than None

least privilege, Least Privilege-Control Plane Versus Data Plane

control plane versus data plane, Control Plane Versus Data Plane-
Control Plane Versus Data Plane

dynamic trust, Dynamic Trust-Dynamic Trust

trust score basics, Trust Score

trust score challenges, Challenges with Trust Scores

strong authentication, Strong Authentication-Strong Authentication

threat models, Threat Models-Zero Trust’s Threat Model

common models, Threat Models-Zero Trust’s Threat Model

zero trust’s model, Zero Trust’s Threat Model-Zero Trust’s Threat
Model

Marsh, Stephen Paul, Zero Trust Architecture Standards, Frameworks, and
Guidelines

MD5 (message digest 5), Message authenticity

Merkle tree, Authentic Code and the Audit Trail

MFA (multifactor authentication), Encryption Versus Authentication

micro-segmentation, Micro-Segmentation

Microsoft Windows

firewalls, Host Filtering

server isolation, Microsoft Server Isolation

migrations, client-side versus server-side, Client-Side Versus Server-Side
Migrations-Client-Side Versus Server-Side Migrations

MitM (man-in-the-middle) attacks, Man-in-the-Middle (MitM) Attacks

ML (see machine learning)

monitoring

active monitoring, Active Monitoring-Active Monitoring

applications monitoring applications, Active Monitoring

encrypted traffic, Trust Score

Moving the U.S. Government Toward Zero Trust Cybersecurity Principles
(memorandum), Executive Order (EO) 14028—Improving the Nation’s
Cybersecurity

mTLS (mutually authenticated TLS), Mutually Authenticated TLS (mTLS)-
Mutually authenticated TLS for device authentication

bulk encryption, Bulk encryption-Bulk encryption

client/server interactions, A Pragmatic Approach

device authentication, Mutually authenticated TLS for device
authentication

message authenticity, Message authenticity

separation of duty, Separation of duty-Separation of duty

multifactor authentication (MFA), Encryption Versus Authentication

mutual authentication, Strong Authentication

N

NAC (network access control), Perimeter Versus Zero Trust

NAT (network address translation), Birth of NAT, Evolution of the Threat
Landscape

National Cybersecurity Center of Excellence (NCCoE), National
Cybersecurity Center of Excellence (NCCoE)

National Cybersecurity Center of the United Kingdom, Role of Zero Trust in
National Cybersecurity, United Kingdom

National Institute of Standards and Technology (NIST)

software supply chain risk mitigation, Understanding the Application
Pipeline

Zero Trust Architecture (NIST SP 800-207), National Institute of
Standards and Technology (NIST)-Threats

trust algorithm, Trust algorithm-Evaluation of access request by the
trust algorithm

zero trust architecture—deployment variations, Zero trust
architecture—deployment variations-Device application
sandboxing

zero trust architecture—logical components, Zero trust architecture
—logical components-Zero trust architecture—logical components

zero trust definition/zero trust architecture definition, Zero
trust/zero trust architecture definition

zero trust definition, Zero trust/zero trust architecture definition

National Security Agency (NSA) Embracing a Zero Trust Security Model,
National Security Agency (NSA)-National Security Agency (NSA)

National Vulnerability Database (NVD), Common Threat Models

NCCoE (National Cybersecurity Center of Excellence), National
Cybersecurity Center of Excellence (NCCoE)

network access control (NAC), Perimeter Versus Zero Trust

network address translation (NAT), Birth of NAT, Evolution of the Threat
Landscape

network agents (see agents)

network flows

authentication of, All Network Flows MUST Undergo Authentication
Before Processing-Devices SHOULD be regularly scanned, patched,
and rotated

application-layer endpoints for performing all authentication and
encryption, Authentication and encryption MUST be performed by
the application-layer endpoints

encryption of flows before transmission, All network flows
SHOULD be encrypted before transmission

enforcing system access by enumerating all network flows, System
access SHOULD be enforced by enumerating all network flows

flow data as source of truth, System access SHOULD be enforced
by enumerating all network flows

regular scanning/patching/rotating of devices, Devices SHOULD
be regularly scanned, patched, and rotated

using only private PKI providers, Authentication SHOULD NOT
rely on public PKI providers—private PKI systems should be used
instead

using strongest authentication/encryption suites, The strongest
authentication and encryption suites available SHOULD be used
within the network

understanding your flows, Understanding Your Flows-Understanding
Your Flows

ways to discover flows, Understanding Your Flows

network layers

OSI network model, Layer 3—Network Layer

visual depiction of, Network Layers, Visually

network models, A Brief Introduction to Network Models-TCP/IP Network
Model

OSI model, OSI Network Model

TCP/IP model, TCP/IP Network Model

visual depiction of network layers, Network Layers, Visually

NIST (see National Institute of Standards and Technology)

NIST SP 1800—Implementing a Zero Trust Architecture (NCCoE
document), National Cybersecurity Center of Excellence (NCCoE)

No More Chewy Centers: The Zero Trust Model of Information Security
(Forrester publication), Forrester

NSA (National Security Agency) Embracing a Zero Trust Security Model,
National Security Agency (NSA)-National Security Agency (NSA)

NVD (National Vulnerability Database), Common Threat Models

O

OAuth, Single Sign-On

object identifiers (OIDs), Standardization Desirable-Standardization
Desirable

on-host firewalls, Host Filtering

The Open Group, The Open Group

OpenID Connect (OIDC), Single Sign-On

OpenID Continuous Access Evaluation Profile, Unified Endpoint
Management (UEM)

OpenID Foundation, Unified Endpoint Management (UEM)

opportunistic attackers, Common Threat Models

OSI network model, OSI Network Model

application layer, Layer 7—Application Layer

data link layer, Layer 2—Data Link Layer

network layer, Layer 3—Network Layer

physical layer, Layer 1—Physical Layer

presentation layer, Layer 6—Presentation Layer

session layer, Layer 5—Session Layer

transport layer, Layer 4—Transport Layer

out-of-band authentication, Out-of-Band Authentication-Moving Toward a
Local Auth Solution

moving toward a local auth solution, Moving Toward a Local Auth
Solution

single sign-on, Single Sign-On-Single Sign-On

SPIFFE, Workload Identities

SSO, Single Sign-On-Single Sign-On

workload identities, Workload Identities

out-of-process encryption, Distributed Traffic Encryption

outbound network security, Evolution of the Threat Landscape

P

packet (see first packet)

passwords, Something You Know: Passwords

PCRs (platform configuration registers), Platform configuration registers

peer reviews, Peer Reviews and Code Audits

PEP (policy enforcement point), Zero trust architecture—logical
components, Device agent/gateway-based deployment

performant symmetric encryption, Encrypting data using a TPM

perimeter model, Evolution of the Perimeter Model-The Contemporary
Perimeter Model

contemporary perimeter model, The Contemporary Perimeter Model

evolution of, Evolution of the Perimeter Model-The Contemporary
Perimeter Model

global IP address space management, Managing the Global IP Address
Space

NAT origins, Birth of NAT

private IP address space origins, Birth of Private IP Address Space

private network–public network connection, Private Networks Connect
to Public Networks

shortcomings, Perimeter Shortcomings-Perimeter Shortcomings

software-defined perimeter, Software-Defined Perimeter

zero trust model versus, Perimeter Versus Zero Trust-Perimeter Versus
Zero Trust

PETs (privacy-enhancing technologies), Privacy-Enhancing Technologies-
Privacy-Enhancing Technologies

“pets”, What Makes Good Policy?

phishing attacks, Phishing

phoning home, Evolution of the Threat Landscape

physical layer (OSI network model), Layer 1—Physical Layer

physical safety, of users, How to Authenticate Identity

PKI (see public key infrastructure)

platform configuration registers (PCRs), Platform configuration registers

Plixer Scrutinizer, Understanding Your Flows

policies

defining/implementing security policies, Defining and Implementing
Security Policies-Defining and Implementing Security Policies

distribution, Policy Distribution

lack of standardization in zero trust policy, What Makes Good Policy?,
What Makes Good Policy?

relationship-oriented, Relationship-Oriented Policy

strong policy as trust booster, Trust Score

policy assignment, Dynamic Trust

policy enforcement point (PEP), Zero trust architecture—logical
components, Device agent/gateway-based deployment

policy engine, Policy Engine-Policy Reviews

elements of good policy, What Makes Good Policy?-What Makes Good
Policy?

policy definition within the organization, Who Defines Policy?

policy reviews, Policy Reviews

policy storage, Policy Storage

policy reviews, Policy Reviews

post-quantum cryptography (PQC), Encryption Versus Authentication,
Quantum Computing

Postel, Jon, Managing the Global IP Address Space

pre-authentication, Bootstrapping Trust: The First Packet

presentation layer (OSI network model), Layer 6—Presentation Layer

printing documents (scenario walkthrough), Use Case: Bob Wants to Send a
Document for Printing-Request Analysis

privacy

as least privilege, Least Privilege

confidentiality versus, Endpoint Enumeration

privacy-enhancing technologies (PETs), Privacy-Enhancing Technologies-
Privacy-Enhancing Technologies

private keys, Strong Authentication

encryption as incomplete solution to key theft, Intermediary keys and
passphrases

X.509 standard and key storage challenges, Private key storage
challenges

private network–public network connection, Private Networks Connect to
Public Networks

privilege escalation, Privilege Escalation and Lateral Movement

Project Calico, Bookended Filtering

proxies

authenticating, Authenticating Load Balancers and Proxies

forward, Zero Trust Proxies

public anonymous, Scenario Walkthrough-Request Analysis

reverse, Zero Trust Proxies

zero trust, Zero Trust Proxies-Zero Trust Proxies

public anonymous proxy, Scenario Walkthrough-Request Analysis

public key infrastructure (PKI)

authenticating trust with, Authenticating Trust

better than none, Public PKI Is Better than None

binding keys to entities, Importance of PKI in Zero Trust

importance in zero trust, Importance of PKI in Zero Trust

private versus public PKI, Private Versus Public PKI

quantum computing’s effect on, Quantum Computing-Quantum
Computing

using private providers for authentication, Authentication SHOULD
NOT rely on public PKI providers—private PKI systems should be
used instead

public keys, Strong Authentication

public network–private network connection, Private Networks Connect to
Public Networks

Q

quality assurance, Quality Assurance and Testing

quantum computing, Encryption Versus Authentication, Quantum Computing-
Quantum Computing

quantum key distribution (QKD), Quantum Computing

quote, Remote attestation

R

realizing a zero trust network, Realizing a Zero Trust Network-Summary

case study: Google BeyondCorp, Case Studies-Conclusion

challenges with multiplatform authentication, Challenges with
Multiplatform Authentication

lessons learned, Lessons Learned-Sparse data sets

leveraging/extending the GFE, Leveraging and Extending the GFE-
Mutual authentication between the proxy and the backend

major components, The Major Components of BeyondCorp-
Implementing inventory-based access control

migrating to BeyondCorp, Migrating to BeyondCorp-Exemption
handling

case study: PagerDuty’s cloud-agnostic network, Case Study:
PagerDuty’s Cloud-Agnostic Network-Value of a Provider-Agnostic
System

configuration management as automation platform, Configuration
Management as an Automation Platform

decentralized user management, Decentralized User Management

distributed traffic encryption, Distributed Traffic Encryption

dynamically calculated local firewalls, Dynamically Calculated
Local Firewalls

rollout, Rollout-Rollout

value of a provider-agnostic system, Value of a Provider-Agnostic
System

challenges (see challenges to implementation/realization)

implementation phase: application authentication/authorization,
Implementation Phase: Application Authentication and Authorization-
Endpoint Security

authenticating load balancers/proxies, Authenticating Load
Balancers and Proxies

client-side versus server-side migrations, Client-Side Versus
Server-Side Migrations-Client-Side Versus Server-Side
Migrations

defining/implementing security policies, Defining and
Implementing Security Policies-Defining and Implementing
Security Policies

endpoint security, Client-Side Versus Server-Side Migrations-
Client-Side Versus Server-Side Migrations

policy distribution, Policy Distribution

relationship-oriented policy, Relationship-Oriented Policy

zero trust proxies, Zero Trust Proxies-Zero Trust Proxies

understanding your current network, The First Steps Toward a Zero
Trust Network: Understanding Your Current Network-“Cheating” with
Configuration Management

assessment and planning, Assessment and Planning

authentication of all network flows before processing, All
Network Flows MUST Undergo Authentication Before Processing-
Devices SHOULD be regularly scanned, patched, and rotated

building a system diagram, Building a System Diagram

choosing scope, Choosing Scope

configuration management, “Cheating” with Configuration
Management-“Cheating” with Configuration Management

controller-less architecture, Controller-Less
Architecture-“Cheating” with Configuration Management

micro-segmentation, Micro-Segmentation

prioritizing requirements, Requirements: What Is Actually
Required?-Requirements: What Is Actually Required?

software-defined perimeter, Software-Defined Perimeter

understanding your flows, Understanding Your Flows-
Understanding Your Flows

ways to discover flows, Understanding Your Flows

Red October, Red October

reimaging, Renewing and Measuring Device Trust, Devices SHOULD be
regularly scanned, patched, and rotated

Release file, Integrity and Authenticity

remote attestation, Remote attestation, Local Measurement

renewing and measuring device trust, Renewing and Measuring Device
Trust-Unified Endpoint Management (UEM)

local measurement, Local Measurement

remote measurement, Remote Measurement

unified endpoint management, Unified Endpoint Management (UEM)-
Unified Endpoint Management (UEM)

repository, securing, Securing the Repository

resource managers, Identity Security in Static and Dynamic Systems-Identity
Security in Static and Dynamic Systems

resource portal-based deployment, Resource portal-based deployment

reverse proxies, Zero Trust Proxies

RFC (Request for Comments) documents, Requirements: What Is Actually
Required?

RFC 1597 (Address Allocation for Private Internets), Birth of Private IP
Address Space

RFC 1631 (The IP Network Address Translator), Birth of NAT

Rivest-Shamir-Adleman (RSA) algorithm, Quantum Computing

ROCA attack, HSM and TPM Attack Vectors

root-of-trust (RoT), Understanding Hardware-Based Root-of-Trust (RoT)

rotation

of credentials, Strong Authentication

of devices, Renewing and Measuring Device Trust, Devices SHOULD
be regularly scanned, patched, and rotated

RSA (Rivest-Shamir-Adleman) algorithm, Quantum Computing

runtime security, Runtime Security-Active Monitoring

active monitoring, Active Monitoring-Active Monitoring

applications monitoring applications, Active Monitoring

isolation, Isolation-Isolation

secure coding practices, Secure Coding Practices

S

SAML (Security Assertion Markup Language), Single Sign-On

sandboxing, Device application sandboxing

SAST (static application security testing), Static and Dynamic Code Analysis

SBOM (software bill of materials), Understanding the Application Pipeline,
Software Bill of Materials (SBOM): The Risk-Software Bill of Materials
(SBOM): The Risk

scalability, as challenge to realization of zero trust, Scalability and
Performance

SDLC (see secure software development cycle)

SDN (software-defined network) architecture, Intermediary Filtering

SDP (see software-defined perimeter entries)

secrets, Authorized Instances-Authorized Instances

secure boot, Bootstrapping Trust

Secure Hash Algorithm (SHA), Message authenticity

secure key management, Encryption Versus Authentication

secure multiparty computation (SMPC), Privacy-Enhancing Technologies

Secure Production Identity Framework For Everyone (SPIFFE), Workload
Identities

secure software development cycle (SDLC), Secure Software Development
Lifecycle (SDLC)-Continuous Improvement

coding and implementation, Coding and Implementation

continuous improvement, Continuous Improvement

deployment and maintenance, Deployment and Maintenance

peer reviews and code audits, Peer Reviews and Code Audits

quality assurance and testing, Quality Assurance and Testing

requirements and design, Requirements and Design

static/dynamic code analysis, Static and Dynamic Code Analysis

Secure Software Development Framework (SSDF), Understanding the
Application Pipeline

Security Service Edge (SSE), Gartner

security tokens, Something You Have: Security Tokens, Authenticating Load
Balancers and Proxies

sensitive financial reports, viewing, Use Case: Bob Wants to View a
Sensitive Financial Report-Request Analysis

server-side migrations, client-side migrations versus, Client-Side Versus
Server-Side Migrations-Client-Side Versus Server-Side Migrations

server/server interactions, A Pragmatic Approach

session layer (OSI network model), Layer 5—Session Layer

SHA (Secure Hash Algorithm), Message authenticity

shadow IT, Shadow IT

Shamir’s Secret Sharing, Shamir’s Secret Sharing

shared kernel environments, Isolation

Shared Signals and Events (SSE) Framework, Unified Endpoint Management
(UEM)

Shor’s algorithm, Quantum Computing

Side-Channel attack, HSM and TPM Attack Vectors

siloed organizations, Siloed Organizations

Simple Network Management Protocol (SNMP), Standardization Desirable-
Standardization Desirable

single packet authorization (SPA), Bootstrapping Trust: The First Packet-
HMAC, Host Filtering

single sign-on (SSO)

for out-of-band authentication, Single Sign-On-Single Sign-On

protocols/technologies for supporting, Single Sign-On

SLSA (Supply Chain Levels for Software Artifacts), Trusting a Distribution
Network

SMPC (secure multiparty computation), Privacy-Enhancing Technologies

SMS, as unsecured communication channel, Something You Have: TOTP

SNMP (Simple Network Management Protocol), Standardization Desirable-
Standardization Desirable

social engineering attacks, Phishing

software bill of materials (SBOM), Understanding the Application Pipeline,
Software Bill of Materials (SBOM): The Risk-Software Bill of Materials
(SBOM): The Risk

software firewalls, Host Filtering

software-defined network (SDN) architecture, Intermediary Filtering

Software-Defined Perimeter (SDP) and Zero Trust (CSA publication), Cloud
Security Alliance (CSA)

software-defined perimeter (SDP) architecture, Software-Defined Perimeter

Software-Defined Perimeter (SDP) Specification v2.0 (CSA publication),
Cloud Security Alliance (CSA)

SolarWinds Network Monitor, Understanding Your Flows

SolarWinds, attack against, Understanding the Application Pipeline, Humans
in the Loop

source code, Trusting Source Code-Code Reviews

authentic code and audit trail, Authentic Code and the Audit Trail-
Authentic Code and the Audit Trail

code reviews, Code Reviews

securing the repository, Securing the Repository

source of truth

flow data as, System access SHOULD be enforced by enumerating all
network flows

for software configuration management, Secure Source of Truth

SP 800-207 (see Zero Trust Architecture (NIST SP 800-207))

SPA (single packet authorization), Bootstrapping Trust: The First Packet-
HMAC, Host Filtering

SPAN (Switched Port Analyzer), Understanding Your Flows

SPIFFE (Secure Production Identity Framework For Everyone), Workload
Identities

SRK (storage root key), Encrypting data using a TPM, HSM and TPM Attack
Vectors

SSDF (Secure Software Development Framework), Understanding the
Application Pipeline

SSE (Security Service Edge), Gartner

SSE (Shared Signals and Events) Framework, Unified Endpoint Management
(UEM)

SSL (secure sockets layer), Strong Authentication

SSO (see single sign-on)

standardization

as agent implementation task, In the Meantime?-In the Meantime?

data format for agents, Standardization Desirable-Standardization
Desirable

lack of in zero trust policy, What Makes Good Policy?

standards, frameworks, and guidelines for zero trust architecture, Zero Trust
Architecture Standards, Frameworks, and Guidelines-Summary

commercial vendors, Commercial Vendors

government publications, Governments-European Union

European Union, European Union

United Kingdom, United Kingdom

United States, United States-National Security Agency (NSA)

private and public organizations, Private and Public Organizations-
International Organization for Standardization (ISO)

Cloud Security Alliance, Cloud Security Alliance (CSA)

Forrester, Forrester

Gartner, Gartner

ISO, International Organization for Standardization (ISO)

Open Group, The Open Group

state-level actors, Common Threat Models, Zero Trust’s Threat Model

static application security testing (SAST), Static and Dynamic Code Analysis

static systems, identity security in, Identity Security in Static and Dynamic
Systems-Identity Security in Static and Dynamic Systems

storage root key (SRK), Encrypting data using a TPM, HSM and TPM Attack
Vectors

strong authentication, Strong Authentication-Strong Authentication

strongSwan, Remote attestation

subject, user versus, What Is an Agent?

Supply Chain Levels for Software Artifacts (SLSA), Trusting a Distribution
Network

supply chain security, Understanding the Application Pipeline

Switched Port Analyzer (SPAN), Understanding Your Flows

symmetric cryptography, Bulk encryption

system diagram, Building a System Diagram

T

TA (see trust algorithm)

TAP (test access point) devices, Understanding Your Flows

targeted attackers, Common Threat Models

TCP/IP network model, TCP/IP Network Model

technological advancements, Technological Advancements-Privacy-
Enhancing Technologies

artificial intelligence, Artificial Intelligence-Artificial Intelligence

privacy-enhancing technologies, Privacy-Enhancing Technologies-
Privacy-Enhancing Technologies

quantum computing, Quantum Computing-Quantum Computing

TEE (Trusted Execution Environment), Confidential Computing

third parties, instance authorization and, Authorized Instances

threat landscape evolution, Evolution of the Threat Landscape-Evolution of
the Threat Landscape

threat models

common models, Threat Models-Zero Trust’s Threat Model

zero trust’s model, Zero Trust’s Threat Model-Zero Trust’s Threat
Model

threats, vulnerabilities versus, Common Threat Models

3CX attack, Understanding the Application Pipeline

time since image, Time Since Image

time-based one-time password (TOTP), Identity Security in Static and
Dynamic Systems, Something You Have: TOTP, Authenticating Load
Balancers and Proxies

TLS (transport layer security), Where Should Zero Trust Be in the Network
Model?

application support issues, Application Support Issues

for client/server interactions, A Pragmatic Approach

X.509 and, Strong Authentication

TNC (Trusted Network Connect), Perimeter Versus Zero Trust

Toward a Zero Trust Architecture (CSA publication), Cloud Security
Alliance (CSA)

TPMs (trusted platform modules)

attack vectors, HSM and TPM Attack Vectors-HSM and TPM Attack
Vectors

authenticating devices with, TPMs-Remote attestation

encrypting data with, Encrypting data using a TPM

intermediary keys/passphrases, Intermediary keys and passphrases

key storage, Generating and Securing Identity

platform configuration registers, Platform configuration registers

remote attestation, Remote attestation

X.509 versus, Remote attestation

traffic, Trusting the Traffic-Summary

authenticity without encryption, Authenticity Without Encryption?-
Authenticity Without Encryption?

bootstrapping trust: first packet, Bootstrapping Trust: The First Packet-
HMAC

FireWall KNock OPerator, FireWall KNock OPerator (fwknop)

HMAC, HMAC

payload encryption, Payload Encryption

short-lived expectations, Short-Lived Exceptions

SPA payload, SPA Payload

cloud access security brokers and identity federation, Cloud Access
Security Brokers (CASBs) and Identity Federation

encryption versus authentication, Encryption Versus Authentication

filtering, Filtering-Intermediary Filtering

bookended filtering, Bookended Filtering-Bookended Filtering

forwarding and routing authorization, Intermediary Filtering

host filtering, Host Filtering-Host Filtering

intermediary filtering, Intermediary Filtering-Intermediary
Filtering

protocols, The Protocols-Mutually authenticated TLS for device
authentication

IKE and IPsec, IKE and IPsec

mTLS, Mutually Authenticated TLS (mTLS)-Mutually
authenticated TLS for device authentication

scenario walkthrough, Scenario Walkthrough-Request Analysis

trusting cloud traffic: challenges and considerations, Trusting Cloud
Traffic: Challenges and Considerations-Trusting Cloud Traffic:
Challenges and Considerations

where best to apply zero trust in network stack, Where Should Zero
Trust Be in the Network Model?-Microsoft Server Isolation

transport layer (OSI network model), Layer 4—Transport Layer

transport layer security (see TLS)

Trojan horses, Evolution of the Threat Landscape

trust

as authentication driver, Trust as the Authentication Driver

in context of ZTN, Where the Trust Lies

managing (see managing trust)

physical safety as requirement for trusting users, How to Authenticate
Identity

trust algorithm (TA), Trust algorithm-Evaluation of access request by the trust
algorithm

evaluating access requests, Evaluation of access request by the trust
algorithm

evaluating input sources, Evaluation of input sources by the trust
algorithm

threats to ZTA, Threats

trust anchor, Managing Trust

trust chain, Managing Trust

trust engine (authorization architecture component), Trust Engine-Exposing
Scores Considered Risky

trust score

basics, Trust Score

challenges with, Challenges with Trust Scores

devices for scoring, Using devices for scoring

entities to be scored, What Entities Are Scored?-Using devices for
scoring

machine learning techniques for deriving, Trust Engine-Trust Engine

network agents for scoring, Using network agents for scoring

risks of exposing scores, Exposing Scores Considered Risky

strong policy as trust booster, Trust Score

trust engine and, Trust Engine-Exposing Scores Considered Risky

trust signals, Trust Signals-Machine Learning

historical access, Historical Access

historical user activity as data source, Trust Signals-Trust Signals

location, Location

machine learning, Machine Learning

network communication patterns, Network Communication Patterns

time since image, Time Since Image

trusted application pipeline, Understanding the Application Pipeline-
Understanding the Application Pipeline

defending against software supply chain attacks, Understanding the
Application Pipeline

supply chain security, Understanding the Application Pipeline

Trusted Execution Environment (TEE), Confidential Computing

trusted insiders, Common Threat Models

Trusted Network Connect (TNC), Perimeter Versus Zero Trust

trusted platform modules (see TPMs)

trusting applications (see applications)

trusting devices (see devices)

trusting the traffic (see traffic)

U

U2F (Universal 2nd Factor) protocol, Something You Have: Security Tokens

UDP (User Datagram Protocol) packet, Bootstrapping Trust: The First Packet

UNC4736 (North Korean hacker group), Understanding the Application
Pipeline

unified endpoint management (UEM), Unified Endpoint Management (UEM)-
Unified Endpoint Management (UEM)

United Kingdom publications on zero trust artifacts, Role of Zero Trust in
National Cybersecurity, United Kingdom

United States

publications on zero trust artifacts

Cybersecurity and Infrastructure Security Agency Zero Trust
Maturity Model, Cybersecurity and Infrastructure Security Agency
(CISA)-Cybersecurity and Infrastructure Security Agency (CISA)

Department of Defense Zero Trust Reference Architecture,
Department of Defense (DoD)-Department of Defense (DoD)

Executive Order 14028—Improving the Nation’s Cybersecurity,
Executive Order (EO) 14028—Improving the Nation’s
Cybersecurity-Executive Order (EO) 14028—Improving the
Nation’s Cybersecurity

National Institute of Standards and Technology SP 800-207,
National Institute of Standards and Technology (NIST)-Threats

National Security Agency Embracing a Zero Trust Security Model,
National Security Agency (NSA)-National Security Agency (NSA)

NIST SP 1800—Implementing a Zero Trust Architecture, National
Cybersecurity Center of Excellence (NCCoE)

role of zero trust in national cybersecurity, Role of Zero Trust in
National Cybersecurity

Universal 2nd Factor (U2F) protocol, Something You Have: Security Tokens

UPnP (Universal Plug and Play), Intermediary Filtering

user authorization (see authorization)

User Datagram Protocol (UDP) packet, Bootstrapping Trust: The First Packet

user directories

for storing identity, User Directories

maintenance, Directory Maintenance

users

as active participants in system security, See Something, Say Something

subject versus, What Is an Agent?

V

variable trust, Summary

version control systems (VCSs), Authentic Code and the Audit Trail

virtual private networks (VPNs), as backdoor, What Is a Zero Trust
Network?

virtualization, Isolation

vulnerabilities, threats versus, Common Threat Models

W

webs of trust (WoTs), Authenticating Trust

Wireshark, Understanding Your Flows

workload identities, Workload Identities

WS-Federation (WS-Fed), Single Sign-On

X

X.509 standard, X.509-X.509 for device authentication

certificate chains and certification authorities, Certificate chains and
certification authorities

certificates, Something You Have: Certificates

device authentication, X.509 for device authentication

device identity and, Device identity and X.509-Device identity and
X.509

private key storage challenges, Private key storage challenges

public and private components, Public and private components

TLS authentication, Strong Authentication

TPMs versus, Remote attestation

Z

zero trust

embracing the essence of, Assessment and Planning

Forrester definition, Forrester

NIST definition, Zero trust/zero trust architecture definition

origin of term, Zero Trust Architecture Standards, Frameworks, and
Guidelines

perimeter model versus, Perimeter Versus Zero Trust-Perimeter Versus
Zero Trust

Zero Trust Architecture (NIST SP 800-207), National Institute of Standards
and Technology (NIST)-Threats

trust algorithm, Trust algorithm-Evaluation of access request by the trust
algorithm

evaluating access requests, Evaluation of access request by the
trust algorithm

evaluating input sources, Evaluation of input sources by the trust
algorithm

threats to ZTA, Threats

zero trust architecture—deployment variations, Zero trust architecture—
deployment variations-Device application sandboxing

device agent/gateway-based deployment, Device agent/gateway-
based deployment

device application sandboxing, Device application sandboxing

enclave gateway model, Enclave gateway model

resource portal-based deployment, Resource portal-based
deployment

zero trust architecture—logical components, Zero trust architecture—
logical components-Zero trust architecture—logical components

zero trust definition/zero trust architecture definition, Zero trust/zero
trust architecture definition

Zero trust architecture design principles (National Cybersecurity Center of
the United Kingdom publication), Role of Zero Trust in National
Cybersecurity, United Kingdom

Zero Trust as a Security Philosophy (CSA publication), Cloud Security
Alliance (CSA)

Zero Trust Commandments (Open Group publication), The Open Group

Zero Trust Core Principles (Open Group publication), The Open Group

Zero Trust eXtended Ecosystem Framework (Forrester publication),
Forrester

Zero Trust Maturity Model (CISA document), Cybersecurity and
Infrastructure Security Agency (CISA)-Cybersecurity and Infrastructure

Security Agency (CISA)

zero trust networks (ZTNs)

realizing a network (see realizing a zero trust network)

standards/frameworks/guidelines (see standards, frameworks, and
guidelines for zero trust architecture)

zero trust fundamentals (see fundamentals of zero trust)

zero trust proxies, Zero Trust Proxies-Zero Trust Proxies

Zero Trust Reference Architecture (US DoD document), Department of
Defense (DoD)-Department of Defense (DoD)

zero trust supplicant, Hardware-Based Zero Trust Supplicant?

zero-click attack, Evolution of the Threat Landscape

zero-knowledge proof (ZKP), Privacy-Enhancing Technologies

ZTNs (see zero trust networks)

About the Authors
Razi Rais is a cybersecurity leader with more than 20 years of expertise in
building and running secure and resilient systems. He has been working with
Microsoft for over a decade, holding positions such as software engineer,
architect, and product manager. His current focus at Microsoft is on building
cutting-edge cybersecurity products and services. Razi is also a lead author
of several books, including Azure Confidential Computing and Zero Trust
(O’Reilly), Microsoft Identity and Access Administrator (Microsoft Press),
and Programming Microsoft’s Clouds (Wrox Press). In addition to being an
active member of the GIAC Advisory Board, he speaks frequently at
international conferences like RSA and conducts workshops and training
sessions on platforms such as O’Reilly and LinkedIn. You can contact him on
LinkedIn or visit his website.

Christina Morillo is an accomplished enterprise information security and
technology leader with over two decades of practical experience building
and leading comprehensive information security and technology programs.
Her skill and expertise have landed her roles at organizations such as
Microsoft and Morgan Stanley, and she currently leads information security
for an NFL sports team. Christina’s impact extends beyond her enterprise
security work. She is a speaker and the author of 97 Things Every
Information Security Professional Should Know and The Future of Security
(both published by O’Reilly). Christina has also contributed to and been
featured in a variety of industry publications. In addition, she serves as a
Fellow and Advisor at New America for the #ShareTheMicInCyber
Initiative, showcasing her commitment to the broader security community.
For more on her professional journey and insights, visit
https://bio.site/christinamorillo and https://www.christinamorillo.com.

Evan Gilman is the cofounder and CEO of SPIRL, the workload identity
company. With roots in academia and a background in operations engineering
and computer networks, he has been building and operating systems in hostile
environments his entire professional career. An open source contributor,
speaker, and author, Evan is passionate about designing systems that strike a
balance with the networks they run on.

https://www.linkedin.com/in/razirais
https://razibinrais.com/
https://bio.site/christinamorillo
https://www.christinamorillo.com/

Doug Barth is a software engineer who loves to learn and shares his
knowledge with others. In his over 20 years of professional experience, he
has worked as both an infrastructure and product engineer at companies like
SPIRL, Stripe, PagerDuty and Orbitz. He has built and spoken about
monitoring systems, mesh networks, and failure injection practices.

Colophon
The animal on the cover of Zero Trust Networks is a squat lobster, a type of
crustacean found in the Galatheoidea and Chirostyloidea superfamilies;
there are over 1,000 species, most of which spend their lives on the sea
floor. Despite their name, squat lobsters are more closely related to hermit
crabs than lobsters.

The squat lobster does not have a shell on its back, and protects itself by
squeezing into crevices or under rocks. Its claws remain out, ready to fend
off predators, defend its territory, and scavenge for food floating by or buried
in the sand. A squat lobster’s arms can grow to be many times longer than its
body. These crustaceans do appear similar to lobsters, with a segmented
thorax and large claws, but are generally flatter and smaller.

The meat of squat lobsters is known as langostino (derived from the Spanish
word for lobster, langosta). It is often used in seafood dishes as a less
expensive alternative to lobster.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Jose Marzan, based on an antique line engraving
from Pictorial Museum of Animated Nature. The series design is by Edie
Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are
Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments from the First Edition
	Acknowledgments from the Second Edition

	1. Zero Trust Fundamentals
	What Is a Zero Trust Network?
	Introducing the Zero Trust Control Plane

	Evolution of the Perimeter Model
	Managing the Global IP Address Space
	Birth of Private IP Address Space
	Private Networks Connect to Public Networks
	Birth of NAT
	The Contemporary Perimeter Model

	Evolution of the Threat Landscape
	Perimeter Shortcomings
	Where the Trust Lies
	Automation as an Enabler
	Perimeter Versus Zero Trust
	Applied in the Cloud
	Role of Zero Trust in National Cybersecurity
	Summary

	2. Managing Trust
	Threat Models
	Common Threat Models
	Zero Trust’s Threat Model

	Strong Authentication
	Authenticating Trust
	What Is a Certificate Authority?
	Importance of PKI in Zero Trust
	Private Versus Public PKI
	Public PKI Is Better than None

	Least Privilege
	Dynamic Trust
	Trust Score
	Challenges with Trust Scores
	Control Plane Versus Data Plane

	Summary

	3. Context-Aware Agents
	What Is an Agent?
	Agent Volatility
	What’s in an Agent?
	How Is an Agent Used?
	Agents Are Not for Authentication

	How to Expose an Agent?
	Rigidity and Fluidity, at the Same Time
	Standardization Desirable
	In the Meantime?

	Summary

	4. Making Authorization Decisions
	Authorization Architecture
	Enforcement
	Policy Engine
	Policy Storage
	What Makes Good Policy?
	Who Defines Policy?
	Policy Reviews

	Trust Engine
	What Entities Are Scored?
	Exposing Scores Considered Risky

	Data Stores
	Scenario Walkthrough
	Summary

	5. Trusting Devices
	Bootstrapping Trust
	Generating and Securing Identity
	Identity Security in Static and Dynamic Systems

	Authenticating Devices with the Control Plane
	X.509
	TPMs
	TPMs for Device Authentication
	HSM and TPM Attack Vectors
	Hardware-Based Zero Trust Supplicant?

	Inventory Management
	Knowing What to Expect
	Secure Introduction

	Renewing and Measuring Device Trust
	Local Measurement
	Remote Measurement
	Unified Endpoint Management (UEM)

	Software Configuration Management
	CM-Based Inventory
	Searchable Inventory
	Secure Source of Truth

	Using Device Data for User Authorization
	Trust Signals
	Time Since Image
	Historical Access
	Location
	Network Communication Patterns
	Machine Learning

	Scenario Walkthrough
	Use Case: Bob Wants to Send a Document for Printing
	Request Analysis
	Use Case: Bob Wants to Delete an Email
	Request Analysis

	Summary

	6. Trusting Identities
	Identity Authority
	Bootstrapping Identity in a Private System
	Government-Issued Identification
	Nothing Beats Meatspace
	Expectations and Stars

	Storing Identity
	User Directories
	Directory Maintenance

	When to Authenticate Identity
	Authenticating for Trust
	Trust as the Authentication Driver
	The Use of Multiple Channels
	Caching Identity and Trust

	How to Authenticate Identity
	Something You Know: Passwords
	Something You Have: TOTP
	Something You Have: Certificates
	Something You Have: Security Tokens
	Something You Are: Biometrics
	Behavioral Patterns

	Out-of-Band Authentication
	Single Sign-On
	Workload Identities
	Moving Toward a Local Auth Solution

	Authenticating and Authorizing a Group
	Shamir’s Secret Sharing
	Red October

	See Something, Say Something
	Trust Signals
	Scenario Walkthrough
	Use Case: Bob Wants to View a Sensitive Financial Report
	Request Analysis

	Summary

	7. Trusting Applications
	Understanding the Application Pipeline
	Trusting Source Code
	Securing the Repository
	Authentic Code and the Audit Trail
	Code Reviews

	Trusting Builds
	Software Bill of Materials (SBOM): The Risk
	Trusted Input, Trusted Output
	Reproducible Builds
	Decoupling Release and Artifact Versions

	Trusting Distribution
	Promoting an Artifact
	Distribution Security
	Integrity and Authenticity
	Trusting a Distribution Network

	Humans in the Loop
	Trusting an Instance
	Upgrade-Only Policy
	Authorized Instances

	Runtime Security
	Secure Coding Practices
	Isolation
	Active Monitoring

	Secure Software Development Lifecycle (SDLC)
	Requirements and Design
	Coding and Implementation
	Static and Dynamic Code Analysis
	Peer Reviews and Code Audits
	Quality Assurance and Testing
	Deployment and Maintenance
	Continuous Improvement

	Protecting Application and Data Privacy
	When You Host Applications in a Public Cloud, How Can You Trust It?
	Confidential Computing
	Understanding Hardware-Based Root-of-Trust (RoT)
	Role of Attestation

	Scenario Walkthrough
	Use Case: Bob Sends Highly Sensitive Data to Financial Application for Computation
	Request Analysis

	Summary

	8. Trusting the Traffic
	Encryption Versus Authentication
	Authenticity Without Encryption?
	Bootstrapping Trust: The First Packet
	FireWall KNock OPerator (fwknop)
	Short-Lived Exceptions
	SPA Payload
	Payload Encryption
	HMAC

	Where Should Zero Trust Be in the Network Model?
	Client and Server Split
	Network Support Issues
	Device Support Issues
	Application Support Issues
	A Pragmatic Approach
	Microsoft Server Isolation

	The Protocols
	IKE and IPsec
	Mutually Authenticated TLS (mTLS)

	Trusting Cloud Traffic: Challenges and Considerations
	Cloud Access Security Brokers (CASBs) and Identity Federation
	Filtering
	Host Filtering
	Bookended Filtering
	Intermediary Filtering

	Scenario Walkthrough
	Use Case: Bob Requests Access to an Email Service Over an Anonymous Proxy Network
	Request Analysis

	Summary

	9. Realizing a Zero Trust Network
	The First Steps Toward a Zero Trust Network: Understanding Your Current Network
	Choosing Scope
	Assessment and Planning
	Requirements: What Is Actually Required?
	All Network Flows MUST Undergo Authentication Before Processing
	Building a System Diagram
	Understanding Your Flows
	Micro-Segmentation
	Software-Defined Perimeter
	Controller-Less Architecture
	“Cheating” with Configuration Management

	Implementation Phase: Application Authentication and Authorization
	Authenticating Load Balancers and Proxies
	Relationship-Oriented Policy
	Policy Distribution
	Defining and Implementing Security Policies
	Zero Trust Proxies
	Client-Side Versus Server-Side Migrations
	Endpoint Security

	Case Studies
	Case Study: Google BeyondCorp
	The Major Components of BeyondCorp
	Leveraging and Extending the GFE
	Challenges with Multiplatform Authentication
	Migrating to BeyondCorp
	Lessons Learned
	Conclusion

	Case Study: PagerDuty’s Cloud-Agnostic Network
	Configuration Management as an Automation Platform
	Dynamically Calculated Local Firewalls
	Distributed Traffic Encryption
	Decentralized User Management
	Rollout
	Value of a Provider-Agnostic System

	Summary

	10. The Adversarial View
	Potential Pitfalls and Dangers
	Attack Vectors
	Identity and Access
	Credential Theft
	Privilege Escalation and Lateral Movement

	Infrastructure and Networks
	Control Plane Security
	Endpoint Enumeration
	Untrusted Computing Platform
	Distributed Denial of Service (DDoS) Attacks
	Man-in-the-Middle (MitM) Attacks
	Invalidation
	Phishing
	Physical Coercion

	Role of Cyber Insurance
	Summary

	11. Zero Trust Architecture Standards, Frameworks, and Guidelines
	Governments
	United States
	United Kingdom
	European Union

	Private and Public Organizations
	Cloud Security Alliance (CSA)
	The Open Group
	Gartner
	Forrester
	International Organization for Standardization (ISO)

	Commercial Vendors
	Summary

	12. Challenges and the Road Ahead
	Challenges
	Mindset Shift
	Shadow IT
	Siloed Organizations
	Lack of Cohesive Zero Trust Products
	Scalability and Performance
	Key Takeaways

	Technological Advancements
	Quantum Computing
	Artificial Intelligence
	Privacy-Enhancing Technologies

	Summary

	Appendix. A Brief Introduction to Network Models
	Network Layers, Visually
	OSI Network Model
	Layer 1—Physical Layer
	Layer 2—Data Link Layer
	Layer 3—Network Layer
	Layer 4—Transport Layer
	Layer 5—Session Layer
	Layer 6—Presentation Layer
	Layer 7—Application Layer
	TCP/IP Network Model

	Index
	About the Authors

